Issue 47, 2022

Recent progress in nickel-catalyzed carboboration of alkenes

Abstract

Alkenes represent one of the most useful building blocks for organic synthesis, owing to their abundance and versatile reactivity. Transition metal (Pd, Cu, Co, Ni, Fe, etc.) catalyzed difunctionalization of alkenes provides efficient access to substituted molecules from readily available alkenes by installing functional groups across their carbon–carbon double bonds. Particularly, Nickel-based catalytic complexes have attracted a great deal of attention. This is because they are prone to undergoing oxidative addition and slow β-hydride elimination, and can access both two-electron and radical pathways. Numerous elegant Ni-catalyzed cross-coupling methods, e.g., (hetero)arylboration, alkenylboration, alkylboration and alkynylboration of alkenes, have been developed with broad scopes and a high tolerance to a variety of functional groups. Therefore, the Ni-catalyzed carboboration of alkenes has become an efficient synthetic protocol to deliver substituted compounds by the cross-coupling of alkenes, electrophiles, and B2Pin2. Despite this progress, a number of challenging issues remaining in the field include broadening the types of carboboration reactions, especially the asymmetric ones, diversifying electrophile types (which is limited to halogens for now) and gaining profound insight into the reaction mechanisms. This review summarizes the recent progress in this emerging field from the literature published since 2018. It will provide the scientific community with convenience to access collective information and to accelerate their further research in order to broaden the scope of methodology and application in drug discovery programs.

Graphical abstract: Recent progress in nickel-catalyzed carboboration of alkenes

Article information

Article type
Review Article
Submitted
10 Oct 2022
Accepted
09 Nov 2022
First published
10 Nov 2022

Org. Biomol. Chem., 2022,20, 9255-9271

Recent progress in nickel-catalyzed carboboration of alkenes

Y. Ye, Y. Lin, N. Mao, H. Yang, X. Ye and T. Xie, Org. Biomol. Chem., 2022, 20, 9255 DOI: 10.1039/D2OB01855A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements