Vincenza
Pironti
* and
Stefano
Colonna
Istituto di Chimica Organica, “A. Marchesini”, Facoltà di Farmacia, Università degli Studi di Milano, via Venezian, 21, 20133, Milano, Italy. E-mail: Vincenza.Pironti@unimi.it; Fax: +390250314476; Tel: +390250314478
First published on 3rd December 2004
A simple, efficient and environmentally friendly one-pot synthesis of β-hydroxy sulfoxides in water under microwave irradiation is reported.
The former are versatile building blocks for synthesizing cyclic sulfides,2 allylic alcohols,1 benzoxathiepines,3 benzothiazepines4 and thioketones.5 On the other hand the readily accessible β-hydroxy sulfoxides have an extended use in asymmetric synthesis.6 They find also a useful application in the preparation of naturally occurring compounds such as leukotrienes.7
The most important synthetic route to β-hydroxy sulfide is the ring opening of epoxides with thiolates.7 It can be promoted by acids, Lewis catalyst or metal salts.8 Thiolysis in water was investigated for the first time by Fringuelli and coworkers,9 where the formation of β-hydroxy sulfides was promoted by Lewis acids such as InCl39 and ZnCl2.10
β-Hydroxy sulfoxides are commonly prepared by oxidation of β-hydroxy sulfides with conventional oxidizing agents.
We herein report the optimization of a one-pot protocol for the preparation of β-hydroxy sulfoxides in water, promoted by microwave irradiation. The opening of the epoxide and the subsequent sulfoxidation were accelerated by microwave and the desired product was obtained in only 15 minutes with very good yield. (Scheme 1) (see Table 1). Microwave activation as a non-conventional energy source has become an important method that can be used to carry out a wide range of reactions with short reaction times and in high yield and regioselectivity.11 Indeed microwave dielectric heating in a pressurized system rapidly increases temperature far above the boiling point of the solvent and leads to a uniform energy transfer to the reactants of the chemical reaction.
![]() | ||
Scheme 1 Example of one-pot synthesis. |
Entry | Epoxide | T/°C | Time/min | Power/Watt | Yield (%) | a/ba | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a Refers to the ratio of a-carbon and b-carbon, determined by 1H-NMR and HPLC analyses. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 |
![]() |
25 | 240 | — | 80 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 | 1a | 150 | 5 | 400 | 97 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 | 1a | 110 | 5 | — | 30 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 |
![]() |
25 | 300 | — | 72 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5 | 2a | 150 | 5 | 400 | 95 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6 |
![]() |
25 | 1440 | — | 43 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7 | 3a | 150 | 10 | 400 | 91 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8 |
![]() |
25 | 300 | — | 77 | 5/95 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9 | 4a | 150 | 5 | 400 | 85 | 3/97 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
10 |
![]() |
25 | 270 | — | 72 | 80/20 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
11 | 5a | 150 | 5 | 400 | 88 | 65/35 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12 |
![]() |
25 | 180 | — | 85 | 5/95 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13 | 6a | 150 | 5 | 400 | 98 | 3/97 |
Water is cheap, readily available and nontoxic resulting in an economic process and has clear advantages as an environmentally friendly solvent alternative in organic synthesis. The heating effect utilized in microwave-assisted organic transformations is due to the dielectric constant of the solvent. For this reason, water is therefore a very useful solvent for microwave-assisted organic synthesis.11
This reaction was optimized using epoxide 1a as starting material and thiophenol. Different parameters such as temperature, equivalent of oxidant and reaction time were studied (see Table 2). The β-hydroxy sulfoxides were isolated in 89% yield as a 25 ∶ 75 mixture of diastereoisomers 1c and 1d of known configuration1,9 (see Scheme 1).
Entry | tert-ButOOH/mol equiv.−1 | T/°C | Time/min | Power/Watt | 1c ∶ 1d | Yield (%) |
---|---|---|---|---|---|---|
1 | 3.0 | 25 | 720 | — | 35 ∶ 65 | 60 |
2 | 3.0 | 70 | 330 | — | 30 ∶ 70 | 65 |
3 | 1.0 | 70 | 10 | 400 | 29 ∶ 71 | 34 |
4 | 1.0 | 70 | 15 | 400 | 31 ∶ 69 | 43 |
6 | 2.0 | 100 | 15 | 400 | 25 ∶ 75 | 89 |
In order to extend our protocol we have also investigated the thiolysis of a variety of epoxides (1a–6a) with thiophenol.
When the thiolysis was performed with microwave irradiation the reaction was very rapid and the products isolated from the reaction media were pure and did not need further purification.
At room temperature and in the absence of microwave irradiation the reaction times were in the range of 3–24 hours and the yields were lower (Table 1).
The rate acceleration observed can be justified as a consequence of the higher temperature and of the microwave irradiation. The opening of 1a performed with conventional heating at 110 °C provided the expected product 1b with only 30% yield (see Table 1 entry 3).
In all cases the ring opening was completely anti-stereoselective and the only products obtained were the trans-β-hydroxy sulfides.13 The reaction proceeded via an SN2 mechanism with attack of the thiol at the less substituted b-carbon, except for compound 5a where the attack was driven predominantly at the benzylic a-carbon by an electronic effect.
This journal is © The Royal Society of Chemistry 2005 |