Multivariate NIR spectroscopy models for moisture, ash and calorific content in biofuels using bi-orthogonal partial least squares regression
Abstract
The multitude of biofuels in use and their widely different characteristics stress the need for improved characterisation of their chemical and physical properties. Industrial use of biofuels further demands rapid characterisation methods suitable for on-line measurements. The single most important property in biofuels is the calorific value. This is influenced by moisture and ash content as well as the chemical composition of the dry biomass. Near infrared (NIR) C– bonds contributed in the prediction of calorific value. This study illustrates the possibility of using the NIR technique in combination with multivariate calibration to predict economically important properties of biofuels and to interpret models. This concept may also be applied for on-line prediction in processes to standardize biofuels or in biofuelled plants for process monitoring.