Issue 5, 2004

Continuous cell washing and mixing driven by an ultrasound standing wave within a microfluidic channel

Abstract

Ultrasound standing wave radiation force and laminar flow have been used to transfer yeast cells from one liquid medium to another (washing) by a continuous field-flow fractionation (FFF) approach. Two co-flowing streams, a cell-free suspending phase (flow rate > 50% of the total flow-through volume) and a yeast suspension, were introduced parallel to the nodal plane of a 3 MHz standing wave resonator. The resonator was fabricated to have a single pressure nodal plane at the centre line of the chamber. Laminar flow ensured a stable interface was maintained as the two suspending phases flowed through the sound field. Initiation of the ultrasound transferred cells to the cell-free phase within 0.5 s. This particle transfer procedure circumvents the pellet formation and re-suspension steps of centrifuge based washing procedures. In addition, fluid mixing was demonstrated in the same chamber at higher sound pressures. The channel operates under negligible back-pressure (cross-section, 0.25 × 10 mm) and with only one flow convergence and one flow division step, the channel cannot be easily blocked. The force acting on the cells is small; less than that experienced in a centrifuge generating 100g. The acoustically-driven cell transfer and mixing procedures described may be particularly appropriate for the increasingly complex operations required in molecular biology and microbiology and especially for their conversion to continuous flow processes.

Article information

Article type
Paper
Submitted
02 Jun 2004
Accepted
06 Sep 2004
First published
27 Sep 2004

Lab Chip, 2004,4, 446-452

Continuous cell washing and mixing driven by an ultrasound standing wave within a microfluidic channel

J. J. Hawkes, R. W. Barber, D. R. Emerson and W. T. Coakley, Lab Chip, 2004, 4, 446 DOI: 10.1039/B408045A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements