A new approach to molecular collision dynamics
Abstract
The highly resolved experiments of modern collision and reaction dynamics indicate that momentum change provides the principal motive force for change at the single molecule level. A description of collisions is developed from two basic equations, one representing the conservation of angular momentum and the other conservation of energy. Linear (or orbital angular) momentum of relative motion is converted to rotational angular momentum under constraints imposed by state-to-state and overall energy conservation. The result is a simple, transparent form of mechanics the parameters of which are familiar to chemists, with bond length playing a central role. The approach is illustrated by predicting the outcome of the elementary collisions of physical and chemical change. Graphical representation of the principal equations allows insight into the physical principles as well as giving a qualitative guide to final rotational distributions. Quantitative calculations accurately reproduce