Issue 15, 2003

Reaction between N2O and CH4 over Fe ion-exchanged BEA zeolite catalyst: A possible role of nascent oxygen transients from N2O

Abstract

The reaction between N2O and CH4 over an Fe ion-exchanged BEA zeolite (Fe-BEA) catalyst was studied by using a pulse reaction technique, temperature-programmed desorption (TPD) and infrared (IR) spectroscopy. N2O readily reacted with CH4 in the presence of an N2O + CH4 mixture above 200 °C, while both the O2 + CH4 reaction and the catalytic decomposition of N2O over the Fe-BEA catalyst required higher temperatures (above 400 °C). In the O2-TPD studies, a desorption peak of O2 was observed above 600 °C after O2 treatment at 250 °C, while a new O2 desorption peak appeared at the lower temperatures after N2O treatment at 250 °C. However, the new O(a) species resulting from the N2O treatment hardly reacted with CH4 even at 350 °C, which was confirmed by the CH4-pulsed experiments. On the other hand, a new IR band at 3683 cm−1, which can be assigned to the OH group on Fe ion species, was observed after O2 or N2O treatment. The peak intensity at 3683 cm−1 was not changed in the exposure of CH4 only, but decreased in the exposure of N2O + CH4 mixture above 150 °C. At the same time, the CHxOy(a) species such as Fe–OCH3 were formed, which were observed by IR measurements. The adsorbed surface species showed a high reactivity with N2O even at low temperatures (∼200 °C). A possible mechanism is discussed in terms of active oxygen species such as nascent oxygen transients (O*(a)), which are formed in the exposure of N2O + CH4 mixture, and may play an important role in the activation/oxidation of CH4 at initial steps to form CHxOy(a) species.

Article information

Article type
Paper
Submitted
14 Jan 2003
Accepted
30 May 2003
First published
24 Jun 2003

Phys. Chem. Chem. Phys., 2003,5, 3328-3333

Reaction between N2O and CH4 over Fe ion-exchanged BEA zeolite catalyst: A possible role of nascent oxygen transients from N2O

S. Kameoka, T. Nobukawa, S. Tanaka, S. Ito, K. Tomishige and K. Kunimori, Phys. Chem. Chem. Phys., 2003, 5, 3328 DOI: 10.1039/B300562N

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements