The kinetics of the complex-formation reactions between monofunctional palladium(II) complexes [Pd(N–N–N)H2O]2+, where N–N–N is 2,2′:6′,2″-terpyridine (terpy), diethylenetriamine (dien) or bis(2-pyridylmethyl)amine (bpma), with L-cysteine, DL-penicillamine and glutathione, have been studied in an aqueous 0.10 M perchloric acid medium using variable-temperature and -pressure stopped-flow spectrophotometry. Second-order rate constants, k1298, varied between 2.8 × 102 and 4.4 × 104 M−1 s−1. The highest reactivity was observed for the [Pd(terpy)H2O]2+ complex, whereas glutathione is the strongest nucleophile. Activation volumes for these reactions varied between −5.6 ± 0.3 and −10.7 ± 1.0 cm3 mol−1. The
negative entropies and volumes of activation support a strong contribution from bond making in the transition state of the substitution process. The crystal structure of [Pd(bpma)Cl]Cl·H2O has been determined by X-ray diffraction at 190 K. Crystals are triclinic with space group P
and consist of distorted square-planar [Pd(bpma)Cl]+ cations. The Pd–N distances are all equal to 2.005(7) Å. The Pd–Cl distance is 2.305(3) Å.
You have access to this article
Please wait while we load your content...
Something went wrong. Try again?