Issue 6, 2000

Abstract

A polymer adsorbent in which a Zr(IV)–edta complex analogue is immobilized has been prepared and applied to the removal of oxo-anions of As(III), As(V) and Se(IV). Effective retention of these anions has been demonstrated with the proposed polymer complex system. The adsorption mechanism of oxo-anions onto the Zr(IV)-chelated polymer complex has been investigated using Zr(IV)–edta as the model compound. The formation of mixed complexes with oxo-anions has been exemplified by the isolation of the carbonato complex K2[Zr(CO3)edta]·3H2O, the structure of which has been confirmed by X-ray crystallography. NMR study suggests that oxo-anions that form weak or moderate conjugate acids, including those of As(III), As(V) and Se(IV), can form mixed complexes with Zr(IV)–edta using the unsaturated coordination site. However, oxo-anions of strong conjugate acids did not show any appreciable interaction with this complex. According to these observations, retention of oxo-anions on the Zr(IV)-chelated polymer complex has been interpreted by a ligand substitution reaction. The adsorption characteristics of As(III), As(V) and Se(IV) on the Zr(IV)-loaded resin have been examined with respect to the equilibrium adsorption, percentage extraction and the effect of co-existing ions. The adsorption and desorption cycles of the oxo-anions have been demonstrated using a column packed with the proposed resin without any loss of column performance, which indicates the possibility for repeated use.

Article information

Article type
Paper
Submitted
31 May 2000
Accepted
22 Sep 2000
First published
06 Nov 2000

J. Environ. Monit., 2000,2, 550-555

Adsorption and removal of oxo-anions of arsenic and selenium on the zirconium(IV) loaded polymer resin functionalized with diethylenetriamine-N,N,N′,N′-polyacetic acid

T. M. Suzuki, D. A. Pacheco Tanaka, M. A. Llosa Tanco, M. Kanesato and T. Yokoyama, J. Environ. Monit., 2000, 2, 550 DOI: 10.1039/B006738P

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements