Interaction between alkali metal aromatic ketone radical anions and the chlorides of lithium and magnesium in solution. A case of a carbon–carbon bond strengthening through complex formation

(Note: The full text of this document is currently only available in the PDF Version )

Maria Micha-Screttas, Georgios A. Heropoulos and Barry R. Steele


Abstract

The interaction between lithium, sodium and potassium salts with the pre-formed radical anions of benzophenone, 2-methylbenzophenone, 2,4,6-trimethylbenzophenone or fluorenone, and lithium or magnesium chlorides has been studied by nuclear magnetic resonance spectroscopy. The interaction between the radical anions and the metal salt depends on both the anion and the countercation and is stronger with magnesium chloride than with lithium chloride. Interaction leads either to the establishment of equilibria (lithium chloride) or to the formation of diamagnetic complexes in solution with rather well defined stoichiometry (magnesium chloride). Sodium 2-methylbenzophenone radical anion, unlike sodium benzophenone radical anion, is soluble and paramagnetic in tetrahydrofuran (THF[hair space]). The highly hindered 2,4,6-trimethylbenzophenone radical anion exhibits a very weak interaction with magnesium chloride. It appears to exist in solution either as a very loose aggregate or as a monomeric entity. It is concluded that complexation between unhindered aromatic ketone radical anions with magnesium chloride causes a C–C bond strengthening in the incipient pinacolate dianion moiety within the radical anion cluster. On the basis of the above information, the success of the GombergBachmann pinacol synthesis by reducing aromatic ketones with Mg–MgI2, can now be understood.


References

  1. A. Behrendt, C. G. Screttas, D. Bethell, O. Schiemann and B. R. Steele, J. Chem. Soc., Perkin Trans. 2, 1998, 2039 RSC; F. Demol, F. X. Sauvage, A. Devos and M. G. Debacker, Synth. Met., 1999, 99, 155 CrossRef CAS; J. S. Miller and A. J. Epstein, Angew. Chem., 1994, 106, 399 CrossRef CAS; Angew. Chem., Int. Ed. Engl., 1994, 33, 385 Search PubMed; M. Baumgarten and K. Müllen, Top. Curr. Chem., 1994, 169, 1 Search PubMed; K. Müllen, Pure Appl. Chem., 1993, 65, 89 CAS; U. Müller, M. Adam and K. Müllen, Chem. Ber., 1994, 127, 437; S. H. Yang, C. Mitchell, J. E. Jackson and B. Kahr, Mol. Cryst. Liq. Cryst., 1995, 271, A147.
  2. (a) Z. Hou, A. Fujita, H. Yamazaki and Y. Wakatsuki, J. Am. Chem. Soc., 1996, 118, 2503 CrossRef CAS; (b) C. Näther, H. Bock, Z. Havlas and T. Hauck, Organometallics, 1998, 17, 4707 CrossRef; W. Jost, M. Adam, V. Enkelmann and K. Müllen, Angew. Chem., Int. Ed. Engl., 1992, 31, 878 CrossRef.
  3. C. G. Screttas, G. A. Heropoulos, B. R. Steele and D. Bethell, Magn. Reson. Chem., 1998, 36, 656 CrossRef CAS.
  4. P. R. Markies, O. S. Akkerman, F. Bickelhaupt, W. J. J. Smeets and A. L. Spek, Adv. Organomet. Chem., 1991, 32, 147 CAS We are indebted to Professor Bickelhaupt for also providing us with a preprint of a forthcoming up-dated review article.
  5. Z. M. Hou, A. Fujita, Y. G. Zhang, T. Miyano, H. Yamazaki and Y. Wakatsuki, J. Am. Chem. Soc., 1998, 120, 754 CrossRef CAS; Z. Hou, T. Miyano, H. Yamazaki and Y. Wakatsuki, J. Am. Chem. Soc., 1995, 117, 4421 CrossRef CAS; Z. Hou, A. Fujita, H. Yamazaki and Y. Wakatsuki, J. Am. Chem. Soc., 1996, 118, 7843 CrossRef CAS; Z. Hou, X. Jia, M. Hoshino and Y. Wakatsuki, Angew. Chem., Int. Ed. Engl., 1997, 36, 1292 CAS.
  6. For recent work see: N. Doslik, T. Sixt and W. Kaim, Angew. Chem., Int. Ed., 1998, 37, 2403 Search PubMed; A. Klein, S. Hasenzahl and W. Kaim, Organometallics, 1998, 17, 3532 CrossRef CAS; A. Vlcek, Jr., F. Baumann, W. Kaim, F.-W. Grevels and F. Hartl, J. Chem. Soc., Dalton Trans., 1998, 215 CrossRef CAS; A. Klein, S. Hasenzahl and W. Kaim, J. Chem. Soc., Perkin Trans. 2, 1997, 2573 RSC; S. Ernst, C. Vogler, A. Klein, W. Kaim and S. Zalis, Inorg. Chem., 1996, 35, 1295 RSC and references therein.
  7. N. C. Fletcher, T. C. Robinson, A. Behrendt, J. C. Jeery, Z. R. Reeves and M. D. Ward, J. Chem. Soc., Dalton Trans., 1999, 2999 RSC; N. C. Harden, E. R. Humphrey, J. C. Jeery, S.-M. Lee, M. Marcaccio, J. A. McCleverty, L. H. Rees and M. D. Ward, J. Chem. Soc., Dalton Trans., 1999, 2417 RSC.
  8. C. G. Screttas, G. I. Ioannou and D. G. Georgiou, Russ. Chem. Bull., 1995, 44, 78 CrossRef.
  9. S. Takeoka, K. Horiuchi and E. Tsushida, Solid State Ionics, 1992, 50, 175 CrossRef CAS.
  10. See for example, S. R. Zhu and T. Cohen, Tetrahedron, 1997, 53, 17607 Search PubMed; G. H. Lee, S. J. Ha, I. K. Yoon and C. S. Pak, Tetrahedron Lett., 1999, 40, 2581 CrossRef; C. S. Salteris, I. D. Kostas, M. Micha-Screttas, B. R. Steele, G. A. Heropoulos, C. G. Screttas and A. Terzis, J. Organomet. Chem., 1999, 590, 63 CrossRef CAS.
  11. H. S. Sorensen and K. Daasbjerg, Acta Chem. Scand., Ser. A, 52, 51 Search PubMed; C. Galli and P. Gentili, Acta Chem. Scand., Ser. A, 1998, 52, 67 Search PubMed; T. Holm, J. Am. Chem. Soc., 1999, 121, 515 CrossRef CAS; S. Shaik, D. Danovich, G. N. Sastry, P. Y. Ayala and H. B. Schlegel, J. Am. Chem. Soc., 1997, 119, 9237 CrossRef CAS.
  12. M. Micha-Screttas, G. A. Heropoulos and B. R. Steele, J. Chem. Soc., Perkin Trans. 2, 1999, 1443 RSC.
  13. C. G. Screttas and M. Micha-Screttas, J. Am. Chem. Soc., 1987, 109, 7573 CrossRef CAS.
  14. C. G. Screttas and M. Micha-Screttas, J. Org. Chem., 1981, 46, 993 (J. Org. Chem., 1983, 48, 153) CrossRef CAS.
  15. The observation that reaction between the diamagnetic complex with methyl iodide led to formation of benzophenone is consistent with this interpretation. Indeed, electron transfer from the pinacolate dianion causes fragmentation via the formation of an oxygen-centred radical and a β-scission process, see ref. 8.
  16. J. March, Advanced Organic Chemistry, Reactions, Mechanisms and Structures, Fourth Edition, John Wiley and Sons, Inc., New York, 1992, p. 1225 Search PubMed.
  17. C. G. Screttas and M. Micha-Screttas, J. Organomet. Chem., 1985, 292, 325 CrossRef CAS.
  18. Handbook of Chemistry and Physics, 54th Edn., CRC Press, Cleveland, Ohio, 1973–1974, Sect. C-2.
Click here to see how this site uses Cookies. View our privacy policy here.