An ab initio and MNDO-d SCF-MO computational study of stereoelectronic control in extrusion reactions of R2I–F iodine(III) intermediates†

(Note: The full text of this document is currently only available in the PDF Version )

Michael A. Carroll, Sonsoles Martín-Santamaría, Victor W. Pike, Henry S. Rzepa and David A. Widdowson


Abstract

MNDO-d and ab initio RHF, B3LYP and MP2 energies and geometries are reported for reactant ground and transition states for F–R′ and R–R′ extrusion and R/R′ interconversion reactions of substituted RR′I–F iodine(III) reactive intermediates. The RR′I–F reactant is predicted to form a stable asymmetric bridged dimer involving a square planar iodine centre, hitherto unconsidered as a factor in the chemistry of hypervalent iodine species. Evidence in support of this hypothesis obtained from previously reported crystal structures is discussed. The reactions of both monomer and bridged dimer are found to exhibit unusually large stereoelectronic effects at the iodine centre, deriving from electron donating and withdrawing substituents on the R groups. They are also unusual in showing transition state substituent effects which are opposite to those controlling the ground state stabilities, for which an NBO analysis is presented. Both these effects are manifest in the transition states for reaction of the dimeric species, which is stabilised by electron withdrawing groups present in the pseudo equatorial R′ group of the reacting centre and in the pseudo axial position of the unreacting R component of the dimer.


References

  1. A. Varvoglis, Chem. Soc. Rev., 1981, 10, 377 RSC; A. Varvoglis, Synthesis, 1984, 709 CrossRef CAS; R. M. Moriarty and O. Prakash, Acc. Chem. Res., 1986, 19, 244 CrossRef CAS; P. J. Stang and V. V. Zhdankin, Chem. Rev., 1996, 96, 1123 CrossRef CAS; A. Varvoglis, Hypervalent Iodine in Organic Synthesis, Academic Press, London, 1997 Search PubMed.
  2. A. Shah, V. W. Pike and D. A. Widdowson, J. Chem Soc., Perkin Trans. 1, 1997, 2463 RSC; V. W. Pike, F. Butt, A. Shah and D. A. Widdowson, J. Chem. Soc., Perkin Trans 1, 1999, 245 RSC.
  3. M. S. Ermolenko, V. A. Budylin and A. N. Kost, J. Heterocyl. Chem. (Engl. Trans.), 1978, 752 Search PubMed; M. van der Puy, J. Fluorine Chem., 1982, 21, 385 CrossRef CAS.
  4. V. W. Pike and F. I. Aigbirhio, J. Chem. Soc., Chem. Commun., 1995, 2215 RSC; A. Shah, V. W. Pike and D. A. Widdowson, J. Chem. Soc., Perkin Trans. 1, 1998, 2043 RSC; A. Shah, D. A. Widdowson and V. W. Pike, J. Labelled Compd. Radiopharm., 1997, 39, 65.
  5. V. V. Grushin, Acc. Chem. Res., 1992, 25, 529 CrossRef CAS; V. V. Grushin, I. I. Demkina and T. P. Tolstaya, J. Chem. Soc., Perkin Trans 2, 1992, 505 RSC and refs. therein.
  6. M. Guillaume, A. Luxen, B. Nebeling, M. Argentini, J. C. Clark and V. W. Pike, Appl. Radiat. Isot., 1991, 42, 749 CrossRef CAS.
  7. M. J. Phelps, J. Mazziotta and H. Schelbert, Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart, Raven Press, New York, 1986 Search PubMed.
  8. A. Luxen, M. Guillaume, W. P. Melega, V. W. Pike, O. Solin and R. Wagner, Nucl. Med. Biol., 1992, 19, 149 CAS; E. S. Garnett, G. Firnau and C. Nahmias, Nature, 1983, 305, 137 CrossRef CAS.
  9. K. M. Lancer and G. H. Wiegand, J. Org. Chem., 1976, 41, 3360 CrossRef CAS; G. A. Olah, T. Sakakibara and G. Asensio, J. Org. Chem., 1978, 43, 463 CrossRef CAS.
  10. A. I. Boldyrev, V. V. Zhdankin, J. Simons and P. J. Stang, J. Am. Chem. Soc., 1992, 114, 10569 CrossRef CAS; P. Schwerdtfeger, J. Phys. Chem., 1996, 100, 2968 CrossRef CAS.
  11. B. M. Bode and M. S. Gordon, J. Mol. Graphics Mod., 1998, 133 Search PubMed.
  12. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis and J. A. Montgomery, J. Comput. Chem., 1993, 14, 1347 CrossRef CAS.
  13. GAUSSIAN98 (Revision A.1), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle and J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1998.
  14. MOPAC2000, J. J. P. Stewart, Fujitsu Limited, Tokyo, Japan, 1999.
  15. F. H. Allen and O. Kennard, Chem. Des. Automat. News, 1993, 8, 1, 31 Search PubMed.
  16. P. J. Stang, A. M. Arif and C. M. Crittell, Angew. Chem., Int. Ed. Engl., 1990, 29, 287 CrossRef.
  17. A. P. Bozopoulos, C. A. Kavounis, G. S. Stergioudis and P. J. Rentzeperis, Z. Kristallogr., 1989, 187, 97 CAS.
  18. N. W. Alcock and R. M. Countryman, J. Chem. Soc., Dalton Trans., 1977, 217; 1987, 193 Search PubMed.
  19. Active models demonstrating these features for all these structures are included in the on-line supplementary data for this article.
  20. V. V. Bardin, T. Fiefhaus, H. J. Frohn, A. Klose, R. Nielinger, A. Priwitzer and T. Schroer, J. Fluorine Chem., 1995, 71, 183 CrossRef CAS.
  21. J. V. Carey, P. A. Chaloner, P. B. Hitchcock, T. Neugebauer and K. R. Seddon, J. Chem. Res., 1996, 348, 358 Search PubMed.
  22. A. K. Mishra, M. M. Olmstead, J. J. Ellison and P. P. Power, Inorg. Chem., 1995, 34, 3210 CrossRef CAS.
  23. P. J. Stang, B. W. Surber, Z.-C. Chen, K. A. Roberts and A. G. Anderson, J. Am. Chem. Soc., 1987, 109, 228 CrossRef CAS.
  24. V. V. Zhdankin, S. A. Erickson and K. J. Hansen, J. Am. Chem. Soc., 1997, 119, 4775 CrossRef CAS.
  25. W. B. Wright and E. A. Meyers, Cryst. Struct. Commun., 1972, 1, 95 Search PubMed.
  26. N. W. Alcock, R. M. Countryman, S. Esperas and J. F. Sawyer, J. Chem. Soc., Dalton Trans., 1979, 854 RSC.
  27. M. Ochiai, Y. Masaki and M. Shiro, J. Org. Chem., 1991, 56, 5511 CrossRef CAS.
  28. A. N. Nesmeyanov, T. L. Khotsyanova, V. V. Saatsazov, T. P. Tolstaya and L. S. Isaeva, Dokl. Akad. Nauk SSSR, 1974, 218, 140 Search PubMed.
  29. T. Mori, R. Rathore, S. V. Lindeman and J. K. Kochi, J. Chem. Soc., Chem. Commun., 1998, 927 RSC See also R. S. Brown, R. W. Nagorski, A. J. Bennet, R. E. D. McClung, G. H. M. Aarts, M. Klobukowski, R. McDonald and B. D. Santarsiero, J. Am. Chem. Soc., 1994, 116, 2448 Search PubMed for a similar structure for a RR'Br–OTf derivative.
  30. T. Kreuter and B. Neumuller, Z. Anorg. Allg. Chem., 1995, 621, 597 CrossRef.
  31. J. T. Leman and A. R. Barron, Organometallics, 1989, 8, 2214 CrossRef CAS.
  32. A. H. Cowley, H. S. Isom and A. Decken, Organometallics, 1995, 14, 2589 CrossRef CAS.
  33. K. Henrick, M. McPartlin, R. W. Matthews, G. B. Deacon and R. J. Phillips, J. Organomet. Chem., 1980, 193, 13 CrossRef CAS.
  34. R. Koster, W. Schussler and R. Boese, Chem. Ber., 1990, 123, 1945.
  35. N. Godbout, D. R. Salahub, J. Andzelm and E. Wimmer, Can. J. Chem., 1992, 70, 560 CAS.
  36. A. J. Sadlej, Theor. Chim. Acta, 1992, 81, 339 CAS.
  37. For some representative examples of this limitation see: F. Jensen and K. N. Houk, J. Am. Chem. Soc., 1987, 109, 3139 Search PubMed; W. L. Jorgensen, D. Lim and J. F. Blake, J. Am. Chem. Soc., 1993, 115, 2936 CrossRef CAS; K. N. Houk, L. Gonzalez and Y. Li, Acc. Chem. Res., 1995, 28, 81 CrossRef CAS; S. Ham and D. M. Birney, Tetrahedron Lett., 1997, 38, 5925 CrossRef CAS.
  38. P. Deslongchamps, Y. L. Dory and A. G. Li, Can. J. Chem., 1994, 72, 2021 CAS.
  39. P. v. R. Schleyer, M. Kaupp, F. Hampel, M. Bremer and K. Mislow, J. Am. Chem. Soc., 1992, 114, 6791 CrossRef; T. Yamamoto and S. Tomodo, Chem. Lett., 1997, 1069 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.