Benzocyclobutenone enolate: an anion with an antiaromatic resonance structure[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Katherine M. Broadus and Steven R. Kass


Abstract

Benzocyclobutenone enolate (1a) was synthesized by deprotonating its conjugate acid with fluoride ion in the gas phase using a Fourier transform mass spectrometer. Reactions of 1a were explored and C-alkylation was found to be greatly preferred over oxygen attack. Thermodynamic properties (ΔH[hair space]°acid(1) = 360.3 ± 2.1 kcal mol–1, EA(benzocyclobutenyl radical) = 1.90 ± 0.10 eV, and BDE(C–H) = 90.5 ± 3.1 kcal mol–1) also were measured. The results are contrasted to ab initio calculations on cyclobutanone, benzocyclobutenone, and cyclobutenone enolates. Natural bond orbital and Bader analyses are reported too. Given our gas phase and computational results, we were able to devise conditions for the generation and trapping of 1a in tetrahydrofuran despite previous failings reported in the literature.


References

  1. B. M. Trost and I. Fleming, Comprehensive Organic Synthesis: Selectivity, Strategy and Efficiency in Modern Organic Chemistry, Pergamon Press, New York, 1991 Search PubMed.
  2. B. A. Lorsbach and M. J. Kurth, Chem. Rev., 1999, 99, 5149 CrossRef.
  3. M. P. Cava and K. Muth, J. Am. Chem. Soc., 1960, 82, 652 CrossRef CAS.
  4. Reported deuterium incorporation into benzocyclobutenone via1a was later retracted (see ref. 5). H. Hart and R. W. Fish, J. Am. Chem. Soc., 1960, 82, 749 Search PubMed.
  5. H. Hart, J. A. Hartlage, R. W. Fish and R. R. Rafos, J. Org. Chem., 1966, 31, 2244 CAS.
  6. D. J. Bertelli and P. Crews, J. Am. Chem. Soc., 1968, 90, 3889 CrossRef CAS.
  7. T. Matsumoto, T. Hamura, Y. Kuriyama and K. Suzuki, Tetrahedron Lett., 1997, 38, 8985 CrossRef CAS.
  8. M. E. Jones, S. R. Kass, J. Filley, R. M. Barkley and G. B. Ellison, J. Am. Chem. Soc., 1985, 107, 109 CrossRef CAS.
  9. J. E. Bartmess, R. L. Hays and G. Caldwell, J. Am. Chem. Soc., 1981, 103, 1338 CrossRef CAS.
  10. M. D. Brickhouse and R. R. Squires, J. Am. Chem. Soc., 1988, 110, 2706 CrossRef CAS.
  11. M. D. Brickhouse and R. R. Squires, J. Phys. Org. Chem., 1989, 2, 389 CAS.
  12. R. N. Hayes, R. P. Grese and M. L. Gross, J. Am. Chem. Soc., 1989, 111, 8336 CrossRef CAS.
  13. I. L. Freriks, L. J. de Koning and N. M. M. Nibbering, J. Am. Chem. Soc., 1991, 113, 9119 CrossRef CAS.
  14. I. L. Freriks, L. J. de Koning and N. M. M. Nibbering, J. Phys. Org. Chem., 1992, 5, 776 CAS.
  15. Trifluoroacetyl chloride has been proposed as a reagent which gives a higher percentage of O-alkylation. However, the percentage of oxygen reactiivity is based on detection of chloride which can, in principle, arise from either C- or O-attack. B. D. Wladkowaski, J. L. Wilbur, M. Zhong and J. I. Brauman, J. Am. Chem. Soc., 1993, 115, 8833 Search PubMed.
  16. M. Zhong and J. I. Brauman, J. Am. Chem. Soc., 1996, 118, 636 CrossRef CAS.
  17. O. Abou-Teim, M. C. Goodland and J. F. W. McOmie, J. Chem. Soc., Perkin Trans. 1, 1983, 2659 RSC.
  18. S. Takano, K. Inomata, K. Samizu, S. Tomita and M. Yanase, Chem. Lett., 1989, 1283 CAS.
  19. M. Krumpolc and J. Rocek, Org. Synth., 1990, Coll. Vol. VII, 114.
  20. T. C. L. Wang, T. L. Ricca and A. G. Marshall, Anal. Chem., 1986, 58, 2935 CrossRef CAS.
  21. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Peterson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, R. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, GAUSSIAN94 Revisions A, B, C; Gaussian, Inc., Pittsburgh, PA, 1995.
  22. J. A. Pople, A. P. Scott, M. W. Wong and L. Radom, Isr. J. Chem., 1993, 33, 345 CAS.
  23. A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988, 88, 899 CrossRef CAS.
  24. F. Weinhold and J. E. Carpenter, in The Structure of Small Molecules and Ions, Plenum, New York, 1988 Search PubMed.
  25. R. F. W. Bader, in Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford, 1990 Search PubMed.
  26. All thermodynamic data unless otherwise noted comes from S. G. Lias, J. E. Bartmess, J. F. Liebmann, J. L. Holmes, R. D. Levin and W. G. Mallard, J. Phys. Chem. Ref. Data, 1988, 17, Suppl. 1 Search PubMed [or the slightly updated form available on a personal computer, NIST Negative Ion Energetics Database (Version 3.00, 1993); NIST Standard Reference Database 19B] or ref. 27. Note, 4.184 kJ = 1 kcal and 1 eV = 23.06 kcal and 96.48 kJ.
  27. J. E. Bartmess, Negative Ion Energetics Data in Secondary Negative Ion Energetic Data, November 1998, National Institute of Standards and Technology, Gaithersburg, MD 20899 (http://webbook.nist.gov) Search PubMed.
  28. J. E. Bartmess and R. M. Georgiadis, Vacuum, 1983, 33, 149 CrossRef CAS.
  29. K. J. Miller, J. Am. Chem. Soc., 1990, 112, 8533 CrossRef CAS.
  30. The error in k–1 is related to the magnitude of the rate and the gauge reading for the neutral pressure. A minimal pressure of the ketone was required to slow the reaction and enable it to be followed over two half-lives. The resulting pressure (ca. 1 – 1.5 × 10–8 Torr) was not much greater than the background pressure (0.3 × 10–8 Torr), so the error in the ion gauge reading was larger than usual.
  31. G. H. Herzberg, Molecular Spectra and Molecular Structure: Infrared and Raman Spectra of Polyatomic Molecules, D. Van Nostrand, Princeton, NJ, 1945; Vol. 2 Search PubMed.
  32. J. W. Gauthier, T. R. Trautman and D. B. Jacobson, Anal. Chim. Acta., 1991, 246, 211 CrossRef CAS.
  33. J. J. Grabowski, J. M. Van Doren, C. H. DePuy and V. M. Bierbaum, J. Chem. Phys., 1984, 80, 575 CrossRef CAS.
  34. Aside from the ions at m/z 247 (adduct –HF) and m/z 147 (perfluoroacetone enolate), two additional products were detected at m/z 169 and 219 (6% and 8%, respectively, relative to the base peak at m/z 247). The m/z 219 species could arise from decarbonylation of the adduct –HF ion and subsequent loss of CF2 would give the anion at m/z 169.
  35. A. G. Marshall and D. C. Roe, J. Chem. Phys., 1980, 73, 1581 CrossRef CAS.
  36. T. B. McMahon and P. Kebarle, Can. J. Chem., 1985, 63, 3160 CAS.
  37. T. B. McMahon, T. Heinis, G. Nicol, J. K. Hovey and P. Kebarle, J. Am. Chem. Soc., 1988, 110, 7591 CrossRef CAS.
  38. We have used the electron anity of the enolate's corresponding radical as a measure of the ion's HOMO energy. The computed MP2 HOMO energy gives a similar value.
  39. G. J. Heiszwolf and H. Kloosterziel, Recl. Trav. Chim. Pays-Bas, 1970, 89, 1153 CAS.
  40. G. K. King, M. M. Maricq, V. M. Bierbaum and C. H. DePuy, J. Am. Chem. Soc., 1981, 103, 7133 CrossRef CAS.
  41. J. J. Grabowski and L. Zhang, J. Am. Chem. Soc., 1989, 111, 1193 CrossRef CAS.
  42. R. W. Taft and F. G. Bordwell, Acc. Chem. Res., 1988, 21, 463 CrossRef.
  43. F. G. Bordwell, J. E. Bartmess, G. E. Drucker, Z. Margolin and W. S. Matthews, J. Am. Chem. Soc., 1975, 97, 3226 CrossRef CAS.
  44. Ketone 9 was found to be stable to the acidic workup conditions.
  45. B. L. Chenard, C. Slapak, D. K. Anderson and J. S. Swenton, J. Chem. Soc., Chem. Commun., 1981, 179 RSC.
  46. D. N. Hickman, K. J. Hodgetts, P. S. Mackman, T. W. Wallace and J. M. Wardleworth, Tetrahedron, 1996, 52, 2235 CrossRef CAS.
  47. Z. Y. Wang, L. Kuang, X. S. Meng and J. P. Gao, Macromolecules, 1998, 31, 2935.
  48. Bond order is calculated as a function of the electron density at the critical point, ρc Bond order = exp{6.458*(ρc– 0.2520)}. See: K. B. Wiberg, R. F. Bader and C. D. H. Lau, J. Am. Chem. Soc., 1987, 109, 985 Search PubMed.
  49. Ellipticity is a measure of the anisotropy of the charge distribution. A larger number suggests more p character. For example, ethane = 0.0, benzene = 0.23 and ethylene = 0.45.
  50. The extended C1–C4 bond might suggest a ring-opened α-ketene phenide isomer; however, this structure is 23.6 kcal mol–1 higher in energy than 1a at the MP2/6-31 + G(d)//HF/6-31 + G(d) level of theory.
  51. D. Kovacek, Z. B. Maksic and I. Novak, J. Phys. Chem., 1997, 107, 1147 Search PubMed.
  52. M. C. Baschky, PhD Thesis, Unversity of Minnesota, 1994.
  53. We estimate that 11 is 1 kcal mol–1 more acidic than phenyl-acetaldehyde.
  54. M. Hare, PhD Thesis, University of Minnesota, 1998.
  55. L. Moore, R. Lubinski, M. C. Baschky, G. D. Dahlke, M. Hare, T. Arrowood, Z. Glasovac, M. Eckert-Maksic and S. R. Kass, J. Org. Chem., 1997, 62, 7390 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.