On the toxicity of phenols to fast growing cells. A QSAR model for a radical-based toxicity

(Note: The full text of this document is currently only available in the PDF Version )

Cynthia D. Selassie, Alan J. Shusterman, Sanjay Kapur, Rajeshwar P. Verma, Litai Zhang and Corwin Hansch


Abstract

The cytotoxicities of a series of simple phenols as well as estrogenic phenols such as octyl and nonyl phenols, Bisphenol A, diethylstilbestrol, estradiol, estriol, equilin and equilenin were studied in a fast growing murine leukemia cell line. The use of calculated homolytic bond dissociation energies (BDE) as the electronic parameter led to the development of a Quantitative Structure–Activity Relationship model with superior results; one which established the importance of relatively low BDE values in enhancing toxicity to rapidly multiplying cells. The correlation equation that emerged is as follows: log 1/C = –0.19BDE + 0.21 log P + 3.11. It suggests that toxicity is closely related to mostly homolytic cleavage of the phenolic O–H bond and overall hydrophobicity of the phenol.


References

  1. C. A. Rice Evans and A. T. Diplock, Free Radical Biol. Med., 1993, 15, 77 CrossRef.
  2. A. M. Soto, H. Justicia, J. W. Wray and C. Sonnenschein, Environ. Health Perspect., 1991, 92, 167.
  3. M. Marselos and L. Tomatis, Eur. J. Cancer, 1992, 28A, 1182 CAS.
  4. M. Marselos and L. Tomatis, Eur. J. Cancer, 1992, 29A, 149 CAS.
  5. C. Hansch and A. Leo, Exploring QSAR. Fundamentals and Applications in Chemistry and Biology, American Chemical Society, Washington, DC, 1995, pp. 180–181; p. 428 Search PubMed.
  6. C. Hansch, B. R. Telzer and L. Zhang, Crit. Rev. Toxicol., 1995, 2567 Search PubMed.
  7. H. Gao, J. A. Katzenellenbogen, R. Garg and C. Hansch, Chem. Rev., 1999, 99, 723 CrossRef.
  8. C. Hansch and H. Gao, Chem. Rev., 1997, 97, 2995 CrossRef CAS.
  9. C. D. Selassie, T. V. DeSoyza, M. Rosario, H. Gao and C. Hansch, Chem. Biol. Interact., 1998, 113, 175 CrossRef CAS.
  10. L. Zhang, H. Gao, C. Hansch and C. D. Selassie, J. Chem. Soc., Perkin Trans. 2, 1998, 2553 RSC.
  11. M. Karelson, V. S. Lobanov and A. R. Katritzky, Chem. Rev., 1996, 96, 1027 CrossRef CAS.
  12. B. E. Henderson, R. Ross and L. Bernstein, Cancer Res., 1988, 48, 246 CAS.
  13. E. Asakawa, M. Hirose, A. Hagiwara, S. Takahashi and N. Ito, Int. J. Cancer, 1994, 56, 146 CAS.
  14. C. Richter, in Free Radical Toxicology, ed. K. B. Wallace, Taylor and Francis, Washington, DC, 1997, p. 89 Search PubMed.
  15. A. M. Brozozowski, A. C. Pike, Z. Dauter, R. E. Hubbard, T. Bonn, O. Engström, L. Öhman, G. L. Greene, J.-A. Gustafsson and M. Carlquist, Nature, 1997, 389, 753 CrossRef CAS.
  16. H. Y. Mak, S. Hoare, P. M. Henttu and M. G. Parker, Mol. Cell Biol., 1999, 19, 3895 CAS.
  17. R. J. Nachman, J. Heterocycl. Chem., 1983, 20, 1423 CAS.
  18. Q. R. Bartz, R. F. Miller and R. Adams, J. Am. Chem. Soc., 1935, 57, 371 CrossRef CAS.
  19. B. S. Furniss, A. J. Hannaford, P. W. G. Smith and A. R. Tatchell, Vogel's Textbook of Practical Organic Chemistry, Fifth Edition, Longman Scientific & Technical, 1989, p. 927 Search PubMed.
  20. H. S. Holt and E. E. Reid, J. Am. Chem. Soc., 1924, 46, 2333 CrossRef CAS.
  21. C-QSAR Program, BioByte Corp., Claremont, CA 91711.
  22. A. D. Becke, J. Chem. Phys., 1993, 98, 5648 CrossRef CAS; C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785 (B3LYP).
  23. P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 1973, 28, 213 (6-31G**) CrossRef.
  24. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902 (AM1).
  25. Jaguar v3.0, Schrodinger, Inc., Portland, OR, 1997.
  26. Spartan version 5.0, Wavefunction, Inc., 18401 Von Karman Avenue, Suite 370, Irvine, CA 92612, USA.
  27. W. R. Wadt and P. J. Hay, J. Chem. Phys., 1985, 82, 284 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.