Kinetics and mechanism of heterogeneous palladium-catalyzed coupling reactions of chloroaryls in water

(Note: The full text of this document is currently only available in the PDF Version )

Sudip Mukhopadhyay, Gadi Rothenberg, Diana Gitis, Harold Wiener and Yoel Sasson


Abstract

Coupling reactions of substituted chlorobenzenes to biphenyls catalyzed by palladium on carbon are performed in water using sodium hydroxide and sodium formate in the presence of a surface active agent. Thus, chlorobenzene, p-chloro-o-xylene, p-chloro-1,1,1-trifluorotoluene, p-chloroanisole, and p-chlorotoluene are coupled under moderate conditions to the respective biaryls. A competing reduction process occurs (e.g. chlorobenzene is reduced to benzene), which can be minimized by altering conditions. The relationship of product selectivity to reaction temperature, formate concentration, base concentration, and surfactant type is examined. The roles of formate, Pd catalyst, and surfactant are discussed. It is proposed that the reduction is dependent on the participation of palladium hydride [Pd2+(H)2], while the coupling occurs via single electron-transfer from Pd0 to the substrate, with subsequent decomposition of the chloroaryl radical anions to obtain aryl radicals and chloride anions. This mechanism is supported by experiments with stoichiometric and sub-stoichiometric amounts of palladium which indicate that selective coupling can occur also in the absence of hydrogen (providing that reduced palladium Pd0, is present in sufficient amount), and by kinetic investigations which indicate that the coupling is actually a first-order reaction, for which the rate-determining step may be the dissociation of the chloroaryl radical anion.


References

  1. For reviews on biaryl preparation methods and applications see: (a) G. Bringmann, R. Walter and R. Weirich, Angew. Chem., Int. Ed. Engl., 1990, 29, 977 CrossRef; (b) M. Sainsbury, Tetrahedron, 1980, 36, 3327 CrossRef CAS.
  2. S. C. Stinson, Chem. Eng. News, 1999, 69.
  3. F. Ullmann, Ber., 1903, 36, 2389 Search PubMed.
  4. (a) N. Miyamura, T. Yanagi and A. Suzuki, Synth. Commun., 1981, 11, 513 CrossRef CAS; (b) A. Suzuki, Pure Appl. Chem., 1991, 63, 419 CAS; (c) for a recent mechanistic study see M. Moreno-Mañas, M. Pérez and R. Pleixats, J. Org. Chem., 1996, 61, 2346 Search PubMed.
  5. M. Brenda, A. Knebelkamp, A. Greiner and W. Heitz, Synlett, 1991, 809 CrossRef CAS.
  6. J. Hassan, V. Penalva, L. Lavenot, C. Gozzi and M. Lemaire, Tetrahedron, 1998, 54, 13793 CrossRef CAS.
  7. P. Bameld and P. M. Quan, Synthesis, 1978, 537 CrossRef CAS.
  8. (a) T. T. Tsou and J. K. Kochi, J. Am. Chem. Soc., 1979, 101, 6319 CrossRef CAS; (b) D. G. Morell and J. K. Kochi, J. Am. Chem. Soc., 1975, 97, 7262 CrossRef CAS.
  9. H. Wiener, PhD Thesis, The Hebrew University of Jerusalem, 1988.
  10. S. Munavalli, D. I. Rossman, L. L. Szafraniec, W. T. Beaudry, D. K. Rohrbaugh, C. P. Ferguson and M. Grätzel, J. Fluorine Chem., 1995, 73, 1 CrossRef CAS.
  11. cf. H. Zhang and K. S. Chan, Tetrahedron Lett., 1996, 37, 1043 Search PubMed.
  12. Y. Tamura, M.-W. Chun, K. Inoue and J. Minamikawa, Synthesis, 1978, 822 CrossRef CAS.
  13. N. Kamewaza, J. Magn. Reson., 1973, 11, 88.
  14. A. McKillop, L. F. Elsom and E. C. Taylor, Tetrahedron, 1970, 26, 4041 CrossRef CAS.
  15. Dictionary of Organic Compounds, 6th edn., Chapman and Hall, London, 1996, vol. 1, p. 899 Search PubMed.
  16. B. M. Trost and H. C. Arndt, J. Am. Chem. Soc., 1973, 95, 5288 CrossRef CAS.
  17. C. J. Pouchert, The Aldrich Library of NMR Spectra, 2nd edn., Aldrich Chemical Co., Milwaukee, 1983, vol. 1, p. 854B Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.