Rotation barriers in aryl- and heteroaryldi(1-adamantyl)methyl systems; the ionic hydrogenation of heteroaryldi(1-adamantyl)methanols

(Note: The full text of this document is currently only available in the PDF Version )

John S. Lomas, Jean-Christophe Lacroix and Jacqueline Vaissermann


Abstract

[2-(3-Methylthienyl)]di(1-adamantyl)methanol is synthesized as a 1∶1 mixture of the anti and syn isomers; the latter rotates incompletely to the more stable isomer upon heating, the equilibrium constant ranging from about 5 to 10 at 150 °C, depending on the solvent. Ionic hydrogenation (deoxygenation) of the 2-(3-methylthienyl) alcohols gives a single product, the syn isomer, in which the methyl group is close to the adamantyls; the anti/syn ratio at equilibrium is substantially higher than for the alcohol. Activation energies (at 157 °C) for synanti rotation in this alcohol and its deoxygenation product are 32.1 and 34.4 kcal mol–1, respectively. The analogous 2-(3-methylfuryl) derivatives have much lower rotation barriers, the alcohol being isolated as the stable, anti rotamer; deoxygenation gives predominantly the corresponding methane. The antisyn rotation barriers for (2-furyl)-, (2-thienyl)- and (thiazol-2-yl)diadamantylmethanols, measured by DNMR, are 16.3, 20.0 and 18.2 kcal mol–1, respectively. Deoxygenation of the 2-furyl alcohol or its 4-methyl derivative gives in both cases two isomers in a ratio of 2∶1, mainly the syn isomer. For the corresponding 2-thienyl alcohols the two isomers are obtained in equal amounts, while the 2-selenienyl analogue shows a preference for the anti isomer (1.8∶1). Rotation barriers (antisyn) for the (2-furyl)-, (2-thienyl)- and (2-selenienyl)diadamantylmethanes are 16.9, 20.2 and 22.1 kcal mol–1, respectively, and about 1 kcal mol–1 higher for the 4-methyl derivatives of the first two.


References

  1. H. Iwamura and K. Mislow, Acc. Chem. Res., 1988, 21, 175 CrossRef CAS; K. Mislow, Chemtracts: Org. Chem., 1989, 2, 151 Search PubMed; G. Yamamoto, Tetrahedron, 1990, 46, 2761 CrossRef CAS; Y. Kawada, H. Sakai, M. Oguri and G. Koga, Tetrahedron Lett., 1994, 35, 139 CrossRef CAS; A. M. Stevens and C. J. Richards, Tetrahedron Lett., 1997, 38, 7805 CrossRef CAS.
  2. T. R. Kelly, M. C. Bowyer, K. V. Bahaskar, D. Bebbington, A. Garcia, F. Lang, M. H. Kim and M. P. Jette, J. Am. Chem. Soc., 1994, 116, 3657 CrossRef CAS.
  3. T. R. Kelly, J. P. Sestelo and I. Tellitu, J. Org. Chem., 1998, 63, 3655 CrossRef CAS.
  4. T. C. Bedard and J. S. Moore, J. Am. Chem. Soc., 1995, 117, 10 662 CrossRef CAS.
  5. A. M. Schoevaars, W. Kruizinga, R. W. J. Zijlstra, N. Veldman, A. L. Spek and B. L. Feringa, J. Org. Chem., 1997, 62, 4943 CrossRef CAS.
  6. J. S. Lomas and J. E. Anderson, J. Org. Chem., 1995, 60, 3246 CrossRef CAS.
  7. M. Oki, Acc. Chen. Res., 1984, 17, 154 Search PubMed; M. Oki, The Chemistry of Rotational Isomers, Springer-Verlag, Berlin-New York, 1993 Search PubMed.
  8. M. Oki, Top. Stereochem., 1983, 14, 1 Search PubMed; M. Oki, Acc. Chem. Res., 1990, 23, 351 CrossRef CAS; M. Oki, T. Fukuda, M. Asakura and S. Toyota, Bull. Chem. Soc. Jpn., 1996, 69, 3267 CAS.
  9. J. M. A. Baas, J. M. van der Toorn and B. M. Wepster, Recl. Trav. Chim. Pays-Bas, 1974, 93, 133 CAS.
  10. J. S. Lomas, P. K. Luong and J. E. Dubois, J. Org. Chem., 1977, 42, 3394 CrossRef CAS.
  11. J. S. Lomas and J. E. Dubois, Tetrahedron, 1981, 37, 2273 CrossRef CAS.
  12. J. S. Lomas and V. Bru-Capdeville, J. Chem. Soc., Perkin Trans. 2, 1994, 459 RSC.
  13. J. S. Lomas, A. Adenier, C. Cordier and J. C. Lacroix, J. Chem. Soc., Perkin Trans. 2, 1998, 2647 RSC.
  14. R. S. Cahn, C. K. Ingold and V. Prelog, Angew. Chem., 1966, 78, 413 CrossRef.
  15. J. S. Lomas and J. Vaissermann, J. Chem. Soc., Perkin Trans. 2, 1998, 1777 RSC.
  16. D. N. Kursanov, Z. N. Parnes and N. M. Loim, Synthesis, 1974, 633 CrossRef CAS; I. Fleming, Organic Silicon Chemistry in Comprehensive Organic Chemistry, ed. D. Barton and W. D. Ollis, Pergamon Press, Oxford, 1979, vol. 3, p. 541 Search PubMed; Y. Nagai, Org. Prep. Proc. Int., 1980, 12, 13 Search PubMed; W. P. Weber, Silicon Reagents for Organic Synthesis, Springer-Verlag, Berlin-Heidelberg, 1983, p. 273 CAS; E. W. Colvin, Silicon Reagents in Organic Synthesis, Academic Press, London, 1988 CAS; E. Keinan, Pure Appl. Chem., 1989, 61, 1737 CAS; G. L. Larson, in The Chemistry of Organosilicon Compounds, ed. S. Patai and Z. Rappoport, Wiley Interscience, Chichester, 1989, Part 1, ch. 11, p. 776 Search PubMed.
  17. H. W. Gschwend and H. R. Rodriguez, Org. React. (N. Y. ), 1979, 26, 1 CAS.
  18. S. Gronowitz and D. Peters, Heterocycles, 1990, 30, 645 CrossRef CAS.
  19. I. Bock, H. Bornowski, A. Ranft and H. Theis, Tetrahedron, 1990, 46, 1199 CrossRef CAS.
  20. M. D. Burness, Org. Synth., 1959, 39, 46 and 49.
  21. E. Pretsch, W. Simon, J. Seibl and T. Clerc, Tables of Spectral Data for Structure Determination of Organic Compounds, Springer-Verlag, Berlin-Heidelberg, 2nd Edn., 1989 Search PubMed.
  22. J. S. Lomas and J. Vaissermann, J. Chem. Soc., Perkin Trans. 2, 1996, 1831 RSC.
  23. J. S. Lomas and J. Vaissermann, Bull. Soc. Chim. Fr., 1996, 133, 25 CAS.
  24. J. Vaissermann and J. S. Lomas, Acta Crystallogr., Sect. C, 1997, 53, 1341 CrossRef.
  25. J. S. Lomas and J. Vaissermann, J. Chem. Soc., Perkin Trans. 2, 1997, 2589 RSC.
  26. J. S. Lomas and J. Vaissermann, J. Chem. Soc., Perkin Trans. 2, 1999, 1639 RSC.
  27. H. Günther, NMR Spectroscopy, Wiley, Chichester, 2nd Edn., 1995, p. 501 Search PubMed; Atta-ur-Rahman, Nuclear Magnetic Resonance, Springer-Verlag, New York, 1986, p. 149 Search PubMed; R. J. Abraham, J. Fisher and P. Loftus, Introduction to NMR Spectroscopy, Wiley, Chichester, 1988, p. 24 Search PubMed; H. O. Kalinowski, S. Berger and S. Braun, Carbon-13 NMR Spectroscopy, Wiley, Chichester, 1988, p. 152 Search PubMed.
  28. gNMR from Cherwell Scientific Publishing Limited, The Magdalen Centre, Oxford Science Park, Oxford OX4 4GA, 1988, p. 152.
  29. F. A. Bovey, Nuclear Magnetic Resonance Spectroscopy, Academic Press, San Diego-London, 2nd Edn., 1988, pp. 291–324 Search PubMed.
  30. H. Kessler, Angew. Chem., Int. Ed. Engl., 1982, 21, 512 CrossRef See also: M. P. Williamson and J. P. Waltho, Chem. Soc. Rev., 1992, 21, 227 Search PubMed.
  31. E. Neumann, P. v. R. Schleyer, K. N. Houk and Y. D. Wu, J. Am. Chem. Soc., 1985, 107, 5560 CrossRef; E. Neumann, S. Sieber and P. v. R. Schleyer, J. Am. Chem. Soc., 1989, 111, 4005 CrossRef CAS.
  32. PC Spartan from Wavefunction, Inc., 18401 Von Karman Avenue, Suite 370, Irvine, CA 92612, USA. AM1: M. J. S. Dewar, E. G. Xoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902 Search PubMed PM3: J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209 CrossRef.
  33. N. L. Allinger, Quantum Chemistry Program Exchange, Program MMP2(85), Indiana University, USA Search PubMed.
  34. E. A. Chandross and C. F. Sheley, J. Am. Chem. Soc., 1968, 90, 4345 CrossRef CAS.
  35. D. J. Watkin, J. R. Carruthers and P. W. Bettridge, CRYSTALS. User Guide, Chemical Crystallography Laboratory, University of Oxford, 1988 Search PubMed.
  36. J. Pearce, D. J. Watkin and D. P. Prout, CAMERON. A Program for Plotting Molecular Structures, Chemical Crystallography Laboratory, University of Oxford, 1992 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.