NMR and X-ray structural study of saturated ([hair space]p-chlorophenyl)pyrrolo[1,2-a][3,1]benzoxazin-1-ones prepared from aroylisobutyric acid and cyclic amino alcohols. High energy barriers for hindered rotation of bridgehead phenyl groups

(Note: The full text of this document is currently only available in the PDF Version )

Petri Tähtinen, Reijo Sillanpää, Géza Stájer, Angela E. Szabó and Kalevi Pihlaja


Abstract

From 2-methyl-3-(p-chlorobenzoyl)propionic acid with stereoisomeric cyclic saturated or partly saturated cis and trans 1,3-amino alcohols and bicyclic amino alcohols, tri- and tetracyclic methyl substituted (p-chlorophenyl)pyrrolo[1,2-a][3,1]benzoxazin-1-ones and methylene bridged derivatives were prepared. For comparison, the bicyclic oxazolone and oxazinone analogs were also prepared. In each case isomeric pairs, which differ in the mutual positions of the aryl and methyl groups, were formed. For the methylene bridged derivatives, the isomers were separated. For evaluation of the structure in solution 1H, 13C{1H}, NOE difference, COSY and HMQC NMR methods were used, and for the crystal structure determinations X-ray diffraction measurements were used. An unusually high free energy barrier of the restricted rotation of the bridgehead p-chlorophenyl group was measured for a cis-, a diendo- and a diexo-fused compound.


References

  1. D. Romo and A. I. Meyers, Tetrahedron, 1991, 47, 9503 CrossRef CAS.
  2. A. I. Meyers, M. Harre and R. Garland, J. Am. Chem. Soc., 1984, 106, 1146 CrossRef CAS.
  3. (a) G. P. Roth, S. F. Leonard and L. Tong, J. Org. Chem, 1996, 61, 5710 CrossRef CAS; (b) A. I. Meyers, M. A. Seefeld and B. A. Lefker, J. Org. Chem., 1996, 61, 5712 CrossRef CAS.
  4. P. Tähtinen, R. Sillanpää, G. Stájer, A. E. Szabó and K. Pihlaja, J. Chem. Soc., Perkin Trans. 2, 1997, 597 RSC.
  5. (a) I. G. Pojarlieff, C. R. Acad. Bulg. Sci., 1968, 21, 245 Search PubMed; Chem. Abstr., 1968, 69, 66786s Search PubMed; (b) M. Y. Lyapova and B. I. Kurtev, Izv. Otd. Khim. Nauki, Bulg. Akad. Nauk., 1969, 2, 333 Search PubMed; Chem. Abstr., 1970, 72, 100638u Search PubMed.
  6. (a) G. Stájer, Zs. Szöke-Molnár, G. Bernáth and P. Sohár, Tetrahedron, 1990, 46, 1943 CrossRef CAS; (b) S. Frimpong-Manso, K. Nagy, G. Stájer, G. Bernath and P. Sohár, J. Heterocycl. Chem., 1992, 29, 221 CAS; (c) G. Stájer, F. Csende, G. Bernáth and P. Sohár, Heterocycles, 1994, 37, 883 CAS.
  7. (a) K. Bynum and R. Rothchild, Spectrosc. Lett., 1997, 30, 1713 CAS (and references therein); (b) K. Bynum and R. Rothchild, Spectrosc. Lett., 1997, 30, 727 CAS (and references therein); (c) G. W. Gribble, F. L. Switzer, J. H. Bushweller, J. G. Jewett, J. H. Brown, J. L. Dion, C. H. Bushweller, M. P. Byrn and C. E. Strouse, J. Org. Chem., 1996, 61, 4319 CrossRef CAS (and references therein); (d) P. Sohár, G. Stájer, K. Nagy and G. Bernáth, Magn. Reson. Chem., 1995, 33, 329 CAS; (e) G. Stájer, A. E. Szabó, G. Bernáth and P. Sohár, Heterocycles, 1994, 38, 1061 CAS; (f) G. Stájer, A. E. Szabó, F. Fülöp, G. Bernáth and P. Sohár, Heterocycles, 1993, 36, 995 CAS.
  8. P. Aeberli and W. J. Houlihan, J. Org. Chem., 1969, 34, 165 CrossRef CAS.
  9. (a) A. Oppenheim, Ber. Deutsch. Chem. Ges., 1901, 34, 4228; (b) R. Anschütz and O. Motschmann, Liebigs Ann. Chem., 1915, 407, 84 Search PubMed.
  10. G. Bernáth, K. L. Láng, K. Kovács and L. Radics, Acta Chim. Acad. Sci. Hung., 1972, 73, 81 CAS.
  11. G. Bernáth, G. Stájer, A. E. Szabó, F. Fülöp and P. Sohár, Tetrahedron, 1985, 41, 1353 CrossRef CAS.
  12. See for example: A. E. Derome, Modern NMR Techniques for Chemistry Research, Pergamon Press, Oxford, 1990, p. 112 Search PubMed.
  13. (a) J. Jeener, Ampere International Summer School, Basko Polje, Yugoslavia, 1971 Search PubMed; (b) W. Aue, E. Bartholdi and R. R. Ernst, J. Chem. Phys., 1976, 64, 2229 CrossRef CAS.
  14. A. Bax and R. Freeman, J. Magn. Reson., 1981, 44, 542 CAS.
  15. (a) A. A. Maudsley and R. R. Ernst, Chem. Phys. Lett., 1977, 50, 368 CrossRef CAS; (b) G. Bodenhausen and R. Freeman, J. Magn. Reson., 1977, 28, 471.
  16. J. R. Garbow, D. P. Weitekamp and A. Pines, Chem. Phys. Lett., 1982, 93, 504 CrossRef CAS.
  17. R. Laatikainen, M. Niemitz, U. Weber, J. Sundelin, T. Hassinen and J. Vepsäläinen, J. Magn. Reson., 1996, A120, 1.
  18. See for example: H. Günther, NMR Spectroscopy—Basic principles, concepts and applications in chemistry, Wiley, Chichester, 1995, 2nd edn., pp. 343–344 Search PubMed.
  19. A. L. van Geet, Anal. Chem., 1970, 42, 679 CrossRef CAS.
  20. TeXsan for Windows, Structure Analysis Software, Molecular Structure Corporation, 1997, Texas 77381, USA.
  21. A. Altomare, G. Cascarano, C. Giacovazzo, A. Gualiardi, M. C. Burla, G. Polidori and M. Camalli, J. Appl. Crystallogr., 1994, 27, 435 CrossRef.
  22. G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Renement, University of Göttingen, Germany, 1997.
  23. L. J. Farrugia, J. Appl. Crystallogr., 1997, 30, 565 CrossRef CAS.
  24. M. Barfield and S. Sternhell, J. Am. Chem. Soc., 1972, 94, 1905 CrossRef CAS.
  25. S. Sternhell, Quart. Rev., 1969, 236 Search PubMed.
  26. M. Barfield, R. J. Spear and S. Sternhell, Chem. Rev., 1976, 76, 593 CrossRef CAS.
  27. L. A. LaPlanche and R. Rothchild, Spectrosc. Lett., 1990, 23, 1041 CAS.
  28. R. Bucourt, in Topics in Stereochemistry, eds. E. L. Eliel and N. L. Allinger, Wiley, New York, 1974, vol. 8 p. 186 Search PubMed.
  29. G. R. Desiraju, Acc. Chem. Res., 1991, 24, 290 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.