The thermodynamic stabilities of tricyclic tetraene C12H12 hydrocarbons

(Note: The full text of this document is currently only available in the PDF Version )

Holger F. Bettinger, Chaeho Pak, Yaoming Xie, Paul v. R. Schleyer and Henry F. Schaefer III


Abstract

The thermodynamic stabilities and heats of formation of tricyclic C12H12 tetraenes 1–6 as well as of a truncated tetrahedron hydrocarbon isomer 7 were computed by various density functional methods in conjunction with a polarized double-ζ basis set. As the DFT stabilities of 1–7 differ significantly from the MM2, MM3, MM4 and AM1 results, we conclude that these empirical and semiempirical methods are inappropriate to study such polycyclic hydrocarbons. Compound 6 with only endocyclic double bonds, a potential synthetic precursor of 7, is found to be less favorable energetically than the other isomers. Although the Csp3–Csp3 single bonds in 1–6 are rather long (1.601 to 1.620 Å) due to a combination of ring strain and hyperconjugation, the small nucleus-independent chemical shift (NICS) values of 1 and 6 confirm the expectation that cyclic electron delocalization is lacking. In contrast, NICS is unusually large in the cage center (–14.6) of 7, but this is due to the cumulative diatropic influence of the four cyclopropane rings.


References

  1. T. Herb and R. Gleiter, Angew. Chem., 1996, 108, 2546; Angew. Chem., Int. Ed. Engl., 1996, 35, 2368 Search PubMed.
  2. E. Vedejs and R. A. Shepherd, J. Org. Chem., 1976, 41, 742 CrossRef CAS.
  3. E. Vedejs, W. R. Wilber and R. Twieg, J. Org. Chem., 1977, 42, 401 CrossRef CAS.
  4. R. B. Woodward and R. Hoffmann, Angew. Chem., 1969, 81, 797; Angew. Chem., Int. Ed. Engl., 1969, 8, 781 Search PubMed.
  5. G. W. Schriver and D. J. Gerson, J. Am. Chem. Soc., 1990, 112, 4723 CrossRef CAS.
  6. J. M. Schulman, R. L. Disch and M. L. Sabio, J. Am. Chem. Soc., 1986, 108, 3258 CrossRef CAS.
  7. R. L. Disch and J. M. Schulmann, J. Am. Chem. Soc., 1990, 112, 3377 CrossRef CAS.
  8. GAUSSIAN 94, Revision C.3, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian Inc., Pittsburgh, PA, 1995.
  9. A. D. Becke, J. Chem. Phys., 1993, 98, 1372 CrossRef CAS.
  10. A. D. Becke, J. Chem. Phys., 1993, 98, 5648 CrossRef CAS.
  11. A. D. Becke, Phys. Rev. A, 1988, 38, 3098 CrossRef CAS.
  12. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785 CrossRef CAS.
  13. J. P. Perdew, Phys. Rev. B, 1986, 33, 8822 CrossRef.
  14. S. Huzinaga, J. Chem. Phys., 1965, 42, 1293 CrossRef.
  15. T. H. Dunning, J. Chem. Phys., 1970, 53, 2823 CrossRef CAS.
  16. N. L. Allinger, J. Am. Chem. Soc., 1977, 99, 8127 CrossRef CAS.
  17. N. L. Allinger, Y. H. Yuh and J.-H. Lii, J. Am. Chem. Soc., 1989, 111, 8551 CrossRef CAS.
  18. N. L. Allinger, K. Chen and J.-H. Lii, J. Comput. Chem., 1996, 17, 642 CrossRef CAS.
  19. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902 CrossRef.
  20. Spartan 5.0.3, Wavefunction, Inc., Irvine, CA, 1997.
  21. P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao and N. J. R. van Eikema Hommes, J. Am. Chem. Soc., 1996, 118, 6317 CrossRef CAS.
  22. K. Wolinski, J. F. Hilton and P. Pulay, J. Am. Chem. Soc., 1990, 112, 8251 CrossRef CAS.
  23. V. G. Malkin, O. L. Malkina, L. A. Eriksson and D. R. Salahub, in Modern Density Functional Theory, ed. J. M. Seminario and P. Politzer, Elesevier, Amsterdam, 1995, p. 273 Search PubMed.
  24. V. G. Malkin, O. L. Malkina, L. A. Eriksson and D. R. Salahub, J. Am. Chem. Soc., 1994, 116, 5898 CrossRef CAS.
  25. W. Kutzelnigg, U. Fleischer and M. Schindler, in NMR: Basic Principles and Progress, Springer, Berlin, 1990, vol. 23, p. 165 Search PubMed.
  26. P. v. R. Schleyer, H. Jiao, N. J. v. E. Hommes, V. G. Malkin and O. L. Malkina, J. Am. Chem. Soc., 1997, 119, 12669 CrossRef.
  27. S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin and W. G. Mallard, J. Phys. Chem. Ref. Data, 1988, 17, Suppl. No. 1, 97.
  28. P. v. R. Schleyer, J. E. Williams and K. R. Blanchard, J. Am. Chem. Soc., 1970, 92, 2377 CrossRef CAS.
  29. N. Cohen and S. W. Benson, Chem. Rev., 1993, 93, 2419 CrossRef CAS.
  30. K. B. Wiberg, Physical Organic Chemistry, Wiley, London, 1964 Search PubMed.
  31. E. M. Engler, J. D. Andose and P. v. R. Schleyer, J. Am. Chem. Soc., 1973, 95, 8005 CrossRef CAS.
  32. S. A. Godleski, P. v. R. Schleyer, E. Osawa and W. T. Wipke, Prog. Phys. Org. Chem., 1981, 13, 63 Search PubMed.
  33. H. F. Bettinger, P. v. R. Schleyer and H. F. Schaefer, Chem. Commun., 1998, 769 RSC.
  34. H. F. Bettinger, H. F. Schaefer, R. Herges, H. Rempel and P. v. R. Schleyer, unpublished results.
  35. M. J. S. Dewar, J. Am. Chem. Soc., 1984, 106, 669 CrossRef CAS.
  36. D. Cremer and E. Kraka, in Structure and Reactivity, ed. J. F. Liebman and A. Greenberg, VCH, New York, 1988, p. 65 Search PubMed.
  37. R. R. Sauers, Tetrahedron, 1998, 54, 337 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.