Fluorescence characteristics of six 4,7-disubstituted benzofurazan compounds: an experimental and semi-empirical MO study

(Note: The full text of this document is currently only available in the PDF Version )

Seiichi Uchiyama, Tomofumi Santa and Kazuhiro Imai


Abstract

To elucidate the factors which determine the fluorescence characteristics (fluorescence quantum yield (Φ), maximum excitation/absorption and emission wavelengths) of 4,7-disubstituted benzofurazan compounds, we have studied the excitation and emission (or relaxation) processes of six typical 4,7-disubstituted benzofurazan compounds. The absorption and fluorescence spectra of these compounds were measured in twenty different solvents and the molecular orbitals relating to excitation and emission (or relaxation) were calculated with semi-empirical methods. The absorption/excitation and emission were ascribed to the electronic transition between HOMO and LUMO. The order of energy gaps between HOMO and LUMO of the 4,7-substituted benzofurazan compounds at the optimized geometry of the ground state agreed with the order of the maximum absorption/excitation energy in vapor phase obtained with the Taft–Kamlet treatment. The order of energy gaps at the optimized geometry of the excited state also agreed with the order of the maximum emission energy in the vapor phase obtained with the Taft–Kamlet treatment. The energy levels of the S1 state of the 4,7-disubstituted benzofurazan compounds were just under the energy level of the T2 state. The order of the energy gaps between the S1 state and the T2 state of the 4,7-disubstituted benzofurazan compounds agreed with the order of the fluorescence quantum yield (Φ) in cyclohexane. These results show that the maximum absorption/excitation, emission wavelengths and the fluorescence quantum yields (Φ) of the 4,7-disubstituted benzofurazan compounds are determined by the energy gaps between the HOMO and LUMO energy at the geometry of the ground state, of the excited state and the energy gap between the S1 and T2 states, respectively.


References

  1. T. Foster, Naturwissenschaften, 1946, 33, 220 CrossRef.
  2. F. W. D. Rost, Fluorescence Microscopy, vol. 1, Cambridge University Press, Cambridge, 1992, p. 28 Search PubMed.
  3. E. L. Wehry and L. B. Rogers, Fluorescence and Phosphorescence Analysis, Wiley New York, London and Sydney, 1966, p. 89 Search PubMed.
  4. D. S. McClure, J. Chem. Phys., 1949, 17, 905 CAS.
  5. W. Rettig and A. Klock, Can. J. Chem., 1985, 63, 1649 CAS.
  6. A. Takadate, T. Masuda, C. Murata, A. Isobe, T. Shinihara, M. Irikura and S. Goya, Anal. Sci., 1997, 13, 753 CAS.
  7. H. Matsunaga, T. Santa, T. Iida, T. Fukushima, H. Homma and K. Imai, Analyst, 1997, 122, 931 RSC.
  8. G. Jones II, W. R. Jackson and A. M. Halpern, Chem. Phys. Lett., 1980, 72, 391 CrossRef.
  9. E. M. Kosower, Acc. Chem. Res., 1982, 15, 259 CrossRef CAS.
  10. R. Saito, T. Hirano, H. Niwa and M. Ohashi, J. Chem. Soc., Perkin Trans. 2, 1997, 1711 RSC.
  11. S. Otsuki and T. Taguchi, J. Photochem. Photobiol. A: Chem., 1997, 104, 108 CrossRef.
  12. K. Imai and Y. Watanabe, Anal. Chim. Acta, 1994, 290, 3 CrossRef CAS.
  13. T. Toyo'oka, T. Suzuki, Y. Saito, S. Uzu and K. Imai, Analyst, 1989, 114, 413 RSC.
  14. T. Toyo'oka and K. Imai, Anal. Chem., 1984, 56, 2431.
  15. K. Imai, T. Toyo'oka and Y. Watanabe, Anal. Biochem., 1983, 128, 471 CrossRef CAS.
  16. T. Santa, K. Kimoto, T. Fukushima, H. Homma and K. Imai, Biomed. Chromatogr., 1996, 10, 183 CrossRef CAS.
  17. T. Santa, A. Takeda, S. Uchiyama, T. Fukushima, H. Homma, S. Suzuki, H. Yokosu, C. K. Lim and K. Imai, J. Pharm. Biomed. Anal., 1998, 17, 1065 CrossRef CAS.
  18. S. Uchiyama, T. Santa, T. Fukushima, H. Homma and K. Imai, J. Chem. Soc., Perkin Trans. 2, 1998, 2165 RSC.
  19. S. Uchiyama, T. Santa and K. Imai, J. Chem. Soc., Perkin Trans. 2, 1999, 569 RSC.
  20. H. Heberer and H. Matschiner, J. Prakt. Chem., 1986, 328, 261 CAS.
  21. S. Lin and W. S. Struve, Photochem. Photobiol., 1991, 54, 361 CAS.
  22. S. F. Forgues, J. P. Fayet and A. Lopez, J. Photochem. Photobiol. A: Chem., 1993, 70, 229 CrossRef CAS.
  23. G. Jones II, W. R. Jackson, C. Choi and R. Bergnark, J. Phys. Chem., 1985, 89, 294 CrossRef.
  24. S. F. Forgues, C. Vidal and D. Lavabre, J. Chem. Soc., Perkin Trans. 2, 1996, 73 RSC.
  25. W. Rettig, Angew. Chem., Int. Ed. Engl., 1986, 25, 971 CrossRef.
  26. J. A. V. Gompel and G. B. Schuster, J. Phys. Chem., 1989, 93, 1292 CrossRef CAS.
  27. R. E. Kellog, J. Chem. Phys., 1966, 44, 411 CrossRef CAS.
  28. R. G. Bennett and P. J. McCartin, J. Chem. Phys., 1966, 44, 1969 CrossRef CAS.
  29. J. Dresner, S. H. Modiano and E. C. Lim, J. Phys. Chem., 1992, 96, 4310 CrossRef CAS.
  30. D. Chen, R. Sadygov and E. C. Lim, J. Phys. Chem., 1994, 98, 2018 CrossRef CAS.
  31. A. N. Fletcher, Photochem. Photobiol., 1969, 9, 439 CrossRef CAS.
  32. M. J. Kamlet, J. L. M. Abboud, M. H. Abraham and R. W. Taft, J. Org. Chem., 1983, 48, 2877 CrossRef CAS.
  33. C. Laurence, P. Nicolet, M. T. Dalati, J. L. M. Abboud and R. Notario, J. Phys. Chem., 1994, 98, 5807 CrossRef CAS.
  34. Y. Marcus, J. Soln. Chem., 1991, 20, 929 Search PubMed.
  35. J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209 CrossRef CAS.
  36. J. J. P. Stewart, J. Comput. Chem., 1989, 10, 221 CrossRef CAS.
  37. J. Ridley and M. Zerner, Theor. Chim. Acta, 1973, 32, 111 CrossRef CAS.
  38. J. Ridley and M. Zerner, Theor. Chim. Acta, 1976, 42, 223 CrossRef CAS.
  39. D. J. Sandman, G. P. Ceasar, A. P. Fisher III, E. Schramm, D. D. Titus and A. D. Baker, Chem. Mater., 1989, 1, 421 CrossRef CAS.
  40. H. Baumann, CNDUV99, Quantum Chemistry Program Exchange, #333 Search PubMed.