An ab initio study of β-fragmentation reactions in some alkoxyacyl (alkoxycarbonyl) and related radicals[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Tauna Morihovitis, Carl H. Schiesser and Melissa A. Skidmore


Abstract

Ab initio molecular orbital calculations using the 6-311G**, cc-pVDZ and aug-cc-pVDZ basis sets, with (MP2, QCISD, CCSD(T)) and without (HF[hair space]) the inclusion of electron correlation indicate that decarboxylation reactions of alkoxyacyl (alkoxycarbonyl) radicals are significantly exothermic. Transition states (16) for these decarboxylation reactions are calculated to have CTS–OTS separations in the range: 1.813–1.892 Å; these distances appear to be affected somewhat by steric compression. At the CCSD(T)/6-311G**//MP2/6-311G** level of theory, energy barriers of 75.9, 72.8, 67.0 and 60.3 kJ mol–1 are calculated for the decarboxylation reactions involving the methoxyacyl, ethoxyacyl, isopropoxyacyl and tert-butoxyacyl radicals (2) respectively, while the reverse reactions are calculated to require energies in excess of 130.9 kJ mol–1. By comparison, the decarbonylation reaction of the acetyl radical (8) is predicted to be significantly endothermic; methyl radicals are calculated to prefer to add to carbon monoxide with an energy barrier of only 24.0 kJ mol–1 at the CCSD(T)/aug-cc-pVDZ//MP2/aug-cc-pVDZ level of theory, in good agreement with available experimental data.

Similar calculations for reactions involving (methoxy)thioacyl, (methylthio)acyl and (methylthio)thioacyl radicals (12–14, R = Me) suggest that only (alkoxy)thioacyl radicals (12) provide synthetically useful β-fragmentation reactions, the remaining systems (13, 14) are unlikely to be useful as alkyl radical precursors in synthesis; the reverse reactions are calculated to be competitive with the β-fragmentation process in these cases.


References

  1. J. Pfenninger, C. Heuberger and W. Graf, Helv. Chim. Acta, 1980, 63, 2328 CrossRef CAS.
  2. M. D. Bachi and E. Bosch, Tetrahedron Lett., 1986, 27, 641 CrossRef CAS; M. D. Bachi and E. Bosch, J. Org. Chem., 1992, 57, 4696 CrossRef CAS.
  3. M. A. Lucas and C. H. Schiesser, J. Org. Chem., 1996, 61, 5754 CrossRef CAS.
  4. M. A. Lucas and C. H. Schiesser, J. Org. Chem., 1998, 63, 3032 CrossRef CAS.
  5. B. Giese, Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds, Pergamon Press, Oxford, 1986 Search PubMed.
  6. D. Dakternieks, D. J. Henry and C. H. Schiesser, J. Chem. Soc., Perkin Trans. 2, 1997, 1665 RSC.
  7. D. Rüegge and H. Fischer, Int. J. Chem. Kinet., 1986, 18, 145 CAS.
  8. A. L. J. Beckwith and V. W. Bowry, J. Am. Chem. Soc., 1994, 116, 2710 CrossRef CAS.
  9. P. A. Simakov, F. N. Martinez, J. H. Horner and M. Newcomb, J. Org. Chem., 1998, 63, 1226 CrossRef CAS.
  10. D. Crich and Q. W. Yao, J. Org. Chem., 1995, 60, 84 CrossRef CAS.
  11. M. Newcomb, Tetrahedron, 1993, 49, 1151 CrossRef CAS.
  12. C. H. Schiesser and M. A. Skidmore, J. Org. Chem., 1998, 63, 5713 CrossRef CAS.
  13. V. Gupta and C. H. Schiesser, unpublished.
  14. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Banker, J. J. P. Stewart, M. Head-Gordon,, C. Gonzalez and J. A. Pople, GAUSSIAN94, Revision B.3, Gaussian Inc., Pittsburgh, PA, 1995 Search PubMed.
  15. W. J. Hehre, L. Radom, P. v. R. Schleyer and P. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986 Search PubMed.
  16. C. E. Brown, A. G. Neville, D. M. Rayner, K. U. Ingold and J. Lusztyk, Aust. J. Chem., 1995, 48, 363 CAS See also: C. Chatgilialoglu, C. Ferreri, M. Lucarini, P. Pedrielli and G. F. Pedulli, Organometallics, 1995, 36, 1299 Search PubMed.
  17. C. J. Pouchert, The Aldrich Library of FT-IR Spectra, Edition 1, Vol. 3, The Aldrich Chemical Company, 1985 Search PubMed.
  18. I. Ryu, T. Okuda, K. Nagahara, N. Kambe, M. Komatsu and N. Sonoda, J. Org. Chem., 1997, 62, 7550 CrossRef CAS; I. Ryu, H. Muraoka, N. Kambe, M. Komatsu and N. Sonoda, J. Org. Chem., 1996, 61, 6396 CrossRef CAS; I. Ryu, N. Sonoda and D. P. Curran, Chem. Rev., 1996, 96, 177 CrossRef CAS.
  19. For excellent reviews, see: I. Ryu and N. Sonda, Angew. Chem., Int. Ed. Engl., 1996, 35, 1050 Search PubMed; C. Chatgilialoglu, D. Crich, M. Komatsu and I. Ryu, Chem. Rev., 1999, 99, 991 CrossRef.
  20. A. Bakac, J. H. Espenson and V. G. Young, Jr., Inorg. Chem., 1992, 31, 4959 CrossRef CAS.
  21. K. Nagahara, I. Ryu, N. Kambe, M. Komatsu and N. Sonoda, J. Org. Chem., 1995, 60, 7384 CrossRef CAS.
  22. D. H. R. Barton and S. W. McCombie, J. Chem. Soc., Perkin Trans. 1, 1975, 1574 RSC; M. J. Robins, J. S. Wilson and F. Hansske, J. Am. Chem. Soc., 1983, 105, 4059 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.