A new reaction between E-cinnamaldehyde and phenyllithium. Mechanistic studies

(Note: The full text of this document is currently only available in the PDF Version )

Norma S. Nudelman and Hernan G. Schulz


Abstract

The reaction of phenyllithium (in excess) with E-cinnamaldehyde gives a surprising tandem addition β-alkylation, which can be successfully used for the synthesis of substituted dihydrochalcones. The mechanism by which these unexpected reactions could occur is unknown and experimental and theoretical studies were carried out as a contribution to its understanding.

The observed concentration effects, the surprising changes in the product distribution upon changes in the reaction conditions, the haptomeric structure of the calculated intermediates and the calculated activation energies are consistent with a reaction pathway in which dimeric phenyllithium attacks the E-cinnamaldehyde without prior deaggregation. Solvated structures were also calculated using a “dielectric continuum” model for solvent effects.


References

  1. K. Bergander, R. He, N. Chandrakumar, O. Eppers and H. Günther, Tetrahedron, 1994, 50, 5861 CrossRef CAS.
  2. N. S. Nudelman, Carbonylation of Main-Group Organometallic Compounds, in The Chemistry of Double Bonded Functional Groups, ed. S. Patai and Z. Rappoport, Wiley, Chichester, 1989, ch. 13, and references therein Search PubMed.
  3. N. J. R. v. Eikema Hommes and P. v. R. Schleyer, Tetrahedron, 1994, 50, 5903 CrossRef.
  4. N. S. Nudelman, E. Lewcowicz and J. Furlong, J. Org. Chem., 1993, 58, 1847 CrossRef CAS.
  5. W. Bauer and D. Seebach, Helv. Chim. Acta, 1984, 67, 1972 CrossRef CAS.
  6. O. Eppers and H. Günther, Helv. Chim. Acta, 1992, 75, 2553 CAS.
  7. W. Bauer, W. R. Winchester and P. v. R. Schleyer, Organometallics, 1987, 6, 2371 CrossRef CAS.
  8. P. P. Power and H. Hope, J. Am. Chem. Soc., 1983, 119, 5320.
  9. R. J. Wehmschulte and P. P. Power, J. Am. Chem. Soc., 1997, 119, 2847 CrossRef CAS.
  10. N. S. Nudelman, H. Schulz, G. G. Liñares, A. Bonatti and G. Boche, Organometallics, 1998, 17, 146 CrossRef CAS.
  11. N. S. Nudelman, G. V. García and H. G. Schulz, J. Org. Chem., 1998, 63, 5730 CrossRef CAS.
  12. N. S. Nudelman, H. G. Schulz and G. V. García, J. Phys. Org. Chem., 1998, 11, 722 CrossRef CAS.
  13. (a) K. Gregory, P. v. R. Schleyer and R. Snaith, Adv. Inorg. Chem., 1991, 37, 47 CrossRef CAS; (b) P. G. Williard, Q.-Y. Liu and L. Lochmann, J. Am. Chem. Soc., 1992, 114, 11003 CrossRef CAS; (c) A. Sekiguchi, Y. Sugai, K. Ebata, C. Kabuto and H. Sakurai, J. Am. Chem. Soc., 1993, 115, 1144 CrossRef CAS; (d) D. R. Armstrong, M. G. Davidson, R. P. Davies, H. J. Mitchell, R. M. Oakley, P. R. Raithby and S. Warren, Angew. Chem., Int. Ed. Engl., 1996, 35, 1942 CrossRef CAS.
  14. R. P. Davies, P. R. Raithby and R. Snaith, Angew. Chem., Int. Ed. Engl., 1997, 36, 1215 CrossRef.
  15. The PM3 method was also used, but the results correlate better with the MNDO calculations.
  16. W. Zarges, M. Marsch, K. Harms and G. Boche, Chem. Ber., 1989, 122, 2303 CAS.
  17. (a) W. N. Setzer and P. v. R. Schleyer, Adv. Inorg. Chem., 1985, 24, 353 CAS; (b) G. A. Suñer, P. M. Deyá and J. M. Saá, J. Am. Chem. Soc., 1990, 112, 1467 CrossRef CAS; (c) J. M. Saá, P. Ballester, P. M. Deyá, M. Capó and X. Garcías, J. Org. Chem., 1996, 61, 1035 CrossRef CAS.
  18. MNDO: M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 1977, 99, 4899 Search PubMed.
  19. MOPAC 97 Fujitsu Limited, Cambridge Soft Corporation, 875 Massachusetts Avenue, Cambridge, MA 02139, USA.
  20. Lithium parameters for MNDO: taken from MNDOC by W. Thiel, QCPE, 1982, 438, vol. 2, p. 63.
  21. (a) E. Kauffmann, K. Raghavachari, A. Reed and P. v. R. Schleyer, Organometallics, 1988, 7, 1597 CrossRef CAS; (b) R. Glaser and A. Streitweiser, J. Org. Chem., 1989, 54, 5491 CrossRef CAS.
  22. (a) J. W. Bausch, P. S. Gregory, G. A. Olah, G. K. Prakasch, P. v. R. Schleyer and G. A. Segal, J. Am. Chem. Soc., 1989, 111, 3633 CrossRef CAS; (b) L. A. Paquette, W. Bauer, M. R. Sivik, M. Bühl, M. Feigel and P. v. R. Schleyer, J. Am. Chem. Soc., 1990, 112, 8776 CrossRef CAS; (c) W. Bauer, G. A. O'Doherty, P. v. R. Schleyer and L. A. Paquette, J. Am. Chem. Soc., 1991, 113, 7093 CrossRef CAS; (d) J. M. Saá, P. M. Deyá, G. A. Suñer and A. Frontera, J. Am. Chem. Soc., 1992, 114, 9093 CrossRef CAS; (e) F. E. Romesberg and D. B. Collum, J. Am. Chem. Soc., 1994, 116, 9187 CrossRef CAS; (f) J. M. Saá, J. Morey, A. Frontera and P. M. Deyá, J. Am. Chem. Soc., 1995, 117, 1105 CrossRef CAS.
  23. W. Bauer, G. A. O'Doherty, P. v. R. Schleyer and L. Paquette, J. Am. Chem. Soc., 1991, 113, 7093 CrossRef CAS.
  24. R. Glaser and A. Streitwieser, J. Mol. Struct. (THEOCHEM), 1988, 163, 19 CrossRef.
  25. J. W. McIver and A. Komornicki, J. Am. Chem. Soc., 1972, 94, 2625 CrossRef.
  26. (a) E. C. Ashby, Tetrahedron Lett., 1982, 23, 2273 CrossRef CAS; (b) A.-C. Malmvik, U. Obenius and U. Henriksson, J. Chem. Soc., Perkin Trans. 2, 1986, 1905 RSC.
  27. (a) N. S. Nudelman, F. Doctorovich, G. Garcia Liñares, H. Schulz and S. Mendiara, Gazz. Chim. Ital., 1996, 126, 19; (b) N. S. Nudelman and F. Doctorovich, J. Chem. Soc., Perkin Trans. 2, 1994, 1233 RSC; (c) F. Doctorovich and N. S. Nudelman, Magn. Reson. Chem., 1990, 28, 576 CAS.
  28. The reactions were carried out in more concentrated solutions, [PhLi]=[1]= 0.2 M, and under these conditions the existence of 5 can be appreciated.
  29. J. F. McGarrity and C. A. Ogle, J. Am. Chem. Soc., 1984, 107, 1805.
  30. (a) T. Koizumi, K. Morihashi and O. Kikuchi, Bull. Chem. Soc. Jpn., 1996, 69, 305 CAS; (b) T. Koizumi and O. Kikuchi, Organometallics, 1995, 14, 987 CrossRef CAS; (c) D. Seebach, Angew. Chem., Int. Ed. Engl., 1990, 29, 1320 CrossRef; (d) E. Kauffman and P. v. R. Schleyer, J. Am. Chem. Soc., 1985, 107, 5560 CrossRef.
  31. W. Bauer, W. R. Winchester and P. v. R. Schleyer, Organometallics, 1987, 6, 2371 CrossRef CAS.
  32. We carried out the semiempirical studies with MNDO and PM3. Both methods gave us similar geometrical results but dissimilar relative energies. The previous successful use of MNDO for calculations of very closely related structures (cinnamyl and aryl derivatives, see references 16(b) and (c)) led us to take the decision to present only the MNDO results.
  33. COSMO (conductor-like screening model) evaluates the solvent screening energy for a cavity based on the solvent-accessible surfaces for a charge distribution derived from a distributed multipole analysis: A. Klamt and G. Schüürmann, J. Chem. Soc., Perkin Trans. 2, 1993, 799 Search PubMed.
  34. The calculated alternative pathways were: (a) attack of monomeric PhLi and similar rearrangement with a [1,2]-hydride shift; (b) previous deaggregation of dimer PhLi and attack followed by the [1,2]-hydride rearrangement (c) addition of PhLi followed by attack of a second lithium with [1,2]-hydride shift and (d) attack of dimer PhLi with H shift from the carbonyl C to O. Options (a) and (b) seem attractive but the energetic changes in these options were unfavorable.
  35. E. Kauffmann, J. Gose and P. v. R. Schleyer, Organometallics, 1989, 8, 2577 CrossRef CAS.
  36. This η3 arrangement with the lithium atom coordinately bonded to the benzylic C, C ipso, and C ortho, is also observed in the X-ray structure of benzyllithium, in S. P. Patterman, I. L. Karle and G. D. Stucky, J. Am. Chem. Soc., 1970, 92, 1150 Search PubMed.
  37. We thank one of the referees for this comment.
  38. J. March, Advanced Organic Chemistry, Reactions, Mechanisms and Structure, 4th edn., Wiley-Interscience, New York, 1992, ch. 18 Search PubMed.
  39. For a number of previous calculations in which discrete solvation was used see: (a) J. F. Remenar, B. L. Lucht and D. B. Collum, J. Am. Chem. Soc., 1997, 119, 5567 CrossRef CAS; (b) A. Abbotto, A. Streitwieser and P. v. R. Schleyer, J. Am. Chem. Soc., 1997, 119, 11255 CrossRef CAS; (c) F. E. Romesberg and D. B. Collum, J. Am. Chem. Soc., 1992, 114, 2112 CrossRef CAS (d) refs. 17(b), 21(d).
  40. Other “dielectric continuum” models are: (a) G. P. Ford and B. Wang, J. Am. Chem. Soc., 1992, 114, 10563 CrossRef CAS; (b) C. J. Cramer and D. G. Truhlar, J. Am. Chem. Soc., 1991, 113, 8305 CrossRef CAS; (c) H. S. Rzepa, M. M. Yi, M. M. Karelson and M. C. Zerner, J. Chem. Soc., Perkin Trans. 2, 1991, 635 RSC; (d) A. R. Katritzky and M. J. Karelson, J. Am. Chem. Soc., 1991, 113, 1561 CrossRef CAS.
  41. CRC Handbook of Chemistry and Physics, ed. David R. Lide, CRC Boca Raton, New York, 78th edn., 1997 Search PubMed.
  42. The reaction of 2 equivalents of PhLi with 2, at 20 °C in THF gives only 79% of 5 and 21% of 4.
  43. (a) S. Klein, I. Marek, J. F. Poisson and J. F. Normant, J. Am. Chem. Soc., 1995, 117, 8853 CrossRef CAS; (b) S. Norsikian, I. Marek, J. F. Poisson and J. F. Normant, J. Org. Chem., 1997, 62, 4898 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.