Effects of amino acids substitution of hydrophobic residues on haem-binding properties of designed two-α-helix peptides

(Note: The full text of this document is currently only available in the PDF Version )

Seiji Sakamoto, Ikuo Obataya, Akihiko Ueno and Hisakazu Mihara


Abstract

We have designed and synthesized a series of amphiphilic two-α-helix peptides, which bound FeIII-mesoporphyrin (haem) through a ligation of two His residues. In the designed structure, amino acid residues arranged around the axial ligands were systematically substituted by hydrophobic Phe, Ile, Leu, Val and Ala residues, in order to know how their hydrophobic and/or steric differences influenced the interaction between the peptides and haem. The binding constants of the peptides with haem, which were estimated from UV–VIS measurements, were significantly correlated with the hydrophobicity at the haem-binding site. Size-exclusion chromatography demonstrated that a tetrameric assembly of peptides was induced cooperatively by the haem-binding. Furthermore, computer-modeling studies suggested that van der Waals contacts between the haem and the side-chains of amino acids around His were important for effective haem-binding. Especially, a Phe residue introduced at an appropriate position contributed to effective haem-binding via the edge-to-face interaction between the aromatic Phe side-chain and the porphyrin ring. In addition to the haem-binding properties of the peptides, the catalytic activity of the haem bound to peptides, which was similar to that of peroxidase, varied significantly depending on the amino acid composition at the haem-binding site. The results obtained in this study demonstrated that the amino acid composition and arrangement at the haem-binding site affected the haem-binding properties of the artificially designed two-α-helix peptides and the catalytic activity of the haem bound to the peptides.


References

  1. The Porphyrins, ed. D. Dolphin, Academic, New York, 1979, vol. 7 Search PubMed.
  2. Cytochrome P450, Structure, Mechanism and Biochemistry, ed. P. R. Oritz de Montellano, Plenum, New York, 1986 Search PubMed.
  3. S. A. Waldman and F. Murad, Pharmacol. Rev., 1987, 39, 163 Search PubMed; M. A. Marletta, J. Biol. Chem., 1993, 268, 12 231 CAS.
  4. T. L. Poulous, Adv. Inorg. Biochem., 1988, 7, 2 Search PubMed.
  5. (a) C. T. Choma, J. D. Lear, M. J. Nelson, P. L. Dutton, D. E. Robertson and W. F. DeGrado, J. Am. Chem. Soc., 1994, 116, 856 CrossRef CAS; (b) D. E. Robertson, R. S. Farid, C. C. Moser, J. L. Urbauer, S. E. Mulholland, R. Pidikiti, J. D. Lear, A. J. Wand, W. F. DeGrado and P. L. Dutton, Nature, 1994, 368, 425 CrossRef CAS; (c) R. E. Sharp, C. C. Moser, F. Rabanal and P. L. Dutton, Proc. Natl. Acad. Sci. USA, 1998, 95, 10 465 CrossRef CAS; (d) B. R. Gibney, F. Rabanal, K. S. Reddy and P. L. Dutton, Biochemistry, 1998, 37, 4635 CrossRef CAS.
  6. (a) H. K. Rau and W. Haehnel, J. Am. Chem. Soc., 1998, 120, 468 CrossRef CAS; (b) H. K. Rau, N. DeJonge and W. Haehnel, Proc. Natl. Acad. Sci. USA, 1998, 95, 11526 CrossRef CAS; (c) E. Katz, V. H. Shabtai, I. Willner, H. K. Rau and W. Haehnel, Angew. Chem., Int. Ed., 1998, 37, 3253 CrossRef CAS.
  7. R. A. Arnold, W. R. Shelton and D. R. Benson, J. Am. Chem. Soc., 1997, 119, 3181 CrossRef CAS.
  8. N. R. L. Rojas, S. Kamtekar, C. T. Simons, J. E. Mclean, K. M. Vogel, T. G. Spiro, R. S. Farid and M. H. Hecht, Protein Sci., 1997, 6, 2512 CrossRef CAS.
  9. H. Morii, M. Ishimura, S. Honda and H. Uedaira, in Peptide Chemistry 1995, ed. N. Nishi, Protein Research Foundation, Osaka, 1996, pp. 481 Search PubMed.
  10. (a) S. Sakamoto, S. Sakurai, A. Ueno and H. Mihara, Chem. Commun., 1997, 1221 RSC; (b) S. Sakamoto, A. Ueno and H. Mihara, J. Chem. Soc., Perkin Trans. 2, 1998, 2395 RSC; (c) S. Sakamoto, A. Ueno and H. Mihara, Chem. Commun., 1998, 1073 RSC; (d) S. Sakamoto, I. Obataya, A. Ueno and H. Mihara, Chem. Commun., 1999, 1111 RSC.
  11. D. L. Huffman, M. M. Rosenblatt and K. S. Suslick, J. Am. Chem. Soc., 1998, 120, 6183 CrossRef CAS.
  12. T. Sasaki and E. T. Kaiser, J. Am. Chem. Soc., 1989, 111, 380 CrossRef CAS; T. Sasaki and E. T. Kaiser, Biopolymers, 1990, 29, 79 CrossRef CAS.
  13. K. S. Åkerfeldt, R. M. Kim, D. Gamac, J. T. Groves, J. D. Lear and W. F. DeGrado, J. Am. Chem. Soc., 1992, 114, 9656 CrossRef CAS.
  14. H. Mihara, N. Nishino, R. Hasegawa and T. Fujimoto, Chem. Lett., 1992, 1805 CAS; H. Mihara, Y. Haruta, S. Sakamoto, N. Nishino and H. Aoyagi, Chem. Lett., 1996, 1 CAS; H. Mihara, K. Tomizaki, T. Fujimoto, S. Sakamoto, H. Aoyagi and N. Nishino, Chem. Lett., 1996, 187 CAS.
  15. F. Nastri, A. Lombardi, G. Morelli, O. Maglio, G. D'Auria, C. Pedone and V. Pavone, Chem. Eur. J., 1997, 3, 340 CAS; G. D'Auria, O. Maglio, F. Nastri, A. Lombardi, M. Mazzeo, G. Morelli, L. Paolillo, C. Pedone and V. Pavone, Chem. Eur. J., 1997, 3, 350 CAS; A. Lombardi, F. Nastri, M. Sanseverino, O. Maglio, C. Pedone and V. Pavone, Inorg. Chim. Acta, 1998, 275–276, 301 CrossRef CAS; F. Nastri, A. Lombardi, L. D. D'Andrea, M. Sanseverino, O. Maglio and V. Pavone, Biopolymers (Peptide Sci.), 1998, 47, 5 Search PubMed.
  16. (a) D. R. Benson, B. R. Hart, X. Zhu and M. B. Doughty, J. Am. Chem. Soc., 1995, 117, 8502 CrossRef CAS; (b) P. A. Arnold, D. R. Benson, D. J. Brink, M. P. Hendrich, G. S. Jas, M. L. Kennedy, D. T. Petasis and M. Wang, Inorg. Chem., 1997, 36, 5306 CrossRef CAS; (c) M. Wang, M. L. Kennedy, B. R. Hart and D. R. Benson, Chem. Commun., 1997, 883 RSC; (d) D. A. Williamson and D. R. Benson, Chem. Commun., 1998, 961 RSC.
  17. S. Marqusee and R. L. Baldwin, Proc. Natl. Acad. Sci. USA, 1987, 84, 8898 CAS.
  18. J. W. Bryson, S. F. Betz, H. S. Lu, D. J. Suich, H. X. Zhou, K. T. O'Neil and W. F. DeGrado, Science, 1995, 270, 935 CAS.
  19. E. Atherton and R. C. Sheppard, Solid Phase Peptide Synthesis: A Practical Approach, IRL Press, Oxford UK, 1989 Search PubMed.
  20. A. Otaka, T. Koide, A. Shide and N. Fujii, Tetrahedron Lett., 1991, 32, 1223 CrossRef CAS.
  21. K. Nakai, A. Kidera and M. Kanehisa, Protein Eng., 1988, 2, 93 CAS.
  22. L.-P. Liu and C. M. Deber, Biochemistry (Peptide Sci.), 1988, 47, 41 Search PubMed.
  23. J. M. Scholtz, H. Qian, E. J. York, J. M. Stewart and R. L. Baldwin, Biopolymers, 1991, 31, 1463 CAS.
  24. P. Y. Chou and G. D. Fasman, Biochemistry, 1974, 13, 222 CrossRef CAS.
  25. J. Janin and S. Wodak, J. Mol. Biol., 1978, 125, 357 CrossRef CAS.
  26. M. J. McGregor, S. A. Islam and M. J. Sternberg, J. Mol. Biol., 1987, 198, 295 CrossRef CAS.
  27. The Porphyrins, ed. D. Dolphin, Academic Press, New York, 1979, vol. 3 Search PubMed.
  28. T. Kuwabara, A. Nakamura, A. Ueno and F. Toda, J. Phys. Chem., 1994, 98, 6297 CrossRef.
  29. M. Bologenesi, S. Onesti, G. Gatti, A. Coda, P. Ascenzi and M. Brunori, J. Mol. Biol., 1989, 205, 529 CrossRef CAS.
  30. F. S. Mathews, P. Argos and M. Levine, Cold Spring Harb. Symp. Quant. Biol., 1972, 36, 387 Search PubMed.
  31. W. L. Jorgensen and D. L. Severance, J. Am. Chem. Soc., 1990, 112, 4768 CrossRef CAS.
  32. P. Chakrabarti, Protein Eng., 1990, 4, 57 CAS.
  33. N. Harada and K. Nakanishi, Circular Dichroism Spectroscopy–Exciton Coupling in Organic Stereochemistry, University Science Books, Mill Valley, CA, 1983 Search PubMed; K. Nakanishi and N. Berova, in Circular Dichroism–Principles and Applications, ed. K. Nakanishi, N. Berova and R. W. Woody, VCH Publishers Inc., New York, NY, 1994, pp. 361 Search PubMed.
  34. N. Harada, S.-M. L. Chen and K. Nakanishi, J. Am. Chem. Soc., 1975, 97, 5345 CrossRef CAS.
  35. M.-C. Hsu and R. W. Woody, J. Am. Chem. Soc., 1971, 93, 3515 CrossRef CAS.
  36. M. P. Heyn, J. Phys. Chem., 1975, 79, 2424 CrossRef CAS.
  37. A. Fujita, H. Senzu, T. Kunitake and I. Hamachi, Chem. Lett., 1994, 1219 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.