[2+2+2]-Cycloreversion reactions: a theoretical elucidation of thermodynamic and through-bond coupling effects on activation energies[hair space]†‡

(Note: The full text of this document is currently only available in the PDF Version )

Dorota Sawicka, Yi Li and K. N. Houk


Abstract

[2+2+2]-Cycloreversion reactions of cyclohexane and ten fused cyclohexanes were studied computationally with B3LYP/6-31G* and CASSCF methods. Reactions involving cleavage of bonds in three- and five-membered rings show distinctly lower barriers to cycloreversion than cleavage of four-membered rings. The lower activation energies for the cleavage of odd-membered rings arise from interactions of the sigma framework of the odd-membered ring with the orbitals of the breaking bond. NICS values were calculated to determine the aromaticity of the different rings involved in bond cleavage. In addition to concerted mechanisms, the stepwise diradical pathways for the [2+2+2]-cycloreversions of cyclohexane and cis-tris-cyclopropacyclohexane were studied.


References

  1. R. B. Woodward and R. Hoffmann, Angew. Chem., 1969, 81, 797 (Angew. Chem., Int. Ed. Engl., 1969, 8, 781); The Conservation of Orbital Symmetry, Verlag Chemie, Weinheim, 1970 Search PubMed.
  2. K. N. Houk, Y. Li and J. D. Evanseck, Angew. Chem., Int. Ed. Engl., 1992, 31, 682 CrossRef.
  3. (a) W. Spielmann, H.-H. Fick, L.-U. Meyer and A. de Meijere, Tetrahedron Lett., 1976, 45, 4057 CrossRef; (b) C. Rucker, H. Muller-Botticher, W.-D. Braschwitz, H. Prinzbach, U. Reifenstahl and H. Irngartinger, Liebigs Ann./Recueil, 1997, 967 Search PubMed; (c) B. Zipperer, K.-H. Muller, B. Gallenkamp, R. Hildebrand, M. Fletschinger, D. Burger, M. Pillat, D. Hunkler, L. Knothe, H. Fritz and H. Prinzbach, Chem. Ber., 1988, 121, 757 CAS.
  4. M. Maas, M. Lutterbeck, D. Hunkler and H. Prinzbach, Tetrahedron Lett., 1983, 24, 2143 CrossRef CAS; P. C. Vollhardt and S. Wolff, Angew. Chem., Int. Ed. Engl., 1990, 29, 1151 CrossRef.
  5. S. W. Benson, J. Chem. Phys., 1961, 34, 521 CAS.
  6. (a) B. Zipperer, K.-H. Muller, B. Gallenkamp, R. Hildebrand, M. Fletschinger, D. Burger, M. Pillat, D. Hunkler, L. Knothe, H. Fritz and H. Prinzbach, Chem. Ber., 1988, 121, 757 CAS; (b) W.-D. Braschwitz, T. Otten, C. Rucker, H. Fritz and H. Prinzbach, Angew. Chem., Int. Ed. Engl., 1989, 28, 1348 CrossRef; (c) R. Schwesinger, M. Breuninger, B. Gallenkamp, K.-H. Muller, D. Hunkler and H. Prinzbach, Chem. Ber., 1980, 113, 3127 CAS; (d) E. Vogel, H.-J. Altenbach and D. Cremer, Angew. Chem., 1973, 85, 862 (Angew. Chem., Int. Ed. Engl., 1973, 12, 838) CAS; (e) H. Prinzbach, H.-P. Bohm, S. Kagabu, V. Wessely and H. V. Rivera, Tetrahedron Lett., 1978, 1243 CrossRef CAS; (f) H.-P. Bohm, Dissertation, University of Freiburg, 1978; (g) H. Prinzbach and D. Stusche, Angew. Chem., 1970, 82, 836; Angew. Chem., Int. Ed. Engl., 1970, 9, 799 Search PubMed; (h) H. Prinzbach, D. Stusche, M. Breuninger and J. Markert, Chem. Ber., 1976, 109, 2823 CAS; (i) H. Prinzbach, D. Stusche, J. Markert and H.-H. Limbach, Chem. Ber., 1976, 109, 3505 CAS.
  7. D. Kaufman, H.-H. Fick, O. Schallner, W. Spielmann, L.-U. Meyer, P. Golitz and A. de Meijere, Chem. Ber., 1983, 116, 587.
  8. (a) W. Spielmann, W. Kaufmann and A. de Meijere, Angew. Chem., Int. Ed. Engl., 1978, 17, 440 CrossRef; (b) P. Binger and J. McMeeking, Angew. Chem., Int. Ed. Engl., 1975, 14, 371 CrossRef; (c) E. Vogel, H.-J. Altenbach and C.-D. Sommerfeld, Angew. Chem., Int. Ed. Engl., 1972, 11, 939 CAS.
  9. H. Prinzbach, H.-P. Schal and D. Hunkler, Angew. Chem., Int. Ed. Engl., 1980, 19, 567 CrossRef; H. Prinzbach, M. Maas, H. Fritz and G. McMullen, Tetrahedron Lett., 1980, 21, 4897 CrossRef CAS.
  10. K. N. Houk, R. W. Gandour, R. W. Strozier, N. G. Rondan and L. A. Paquette, J. Am. Chem. Soc., 1979, 101, 6797 CrossRef CAS.
  11. R. D. Bach, G. J. Wolber and H. B. Schlegel, J. Am. Chem. Soc., 1985, 107, 2837 CrossRef CAS.
  12. A. Ioffe and S. Shaik, J. Chem. Soc., Perkin Trans. 2, 1992, 2101 RSC.
  13. H. Jiao and P. v. R. Schleyer, J. Phys. Org. Chem., 1998, 11, 655 CrossRef CAS.
  14. S. P. Verevkin, H.-D. Beckhaus, C. Rüchardt, R. Haag, S. I. Kozhushkov, T. Zywietz, A. de Meijere, H. Jiao and P. v. R. Schleyer, J. Am. Chem. Soc., 1998, 120, 11130 CrossRef CAS.
  15. J. Spanget-Larsen and R. Gleiter, Angew. Chem., Int. Ed. Engl., 1978, 17, 441 CrossRef.
  16. D. Sawicka, S. Wilsey and K. N. Houk, J. Am. Chem. Soc., 1999, 121, 864 CrossRef CAS.
  17. GAUSSIAN94 (Revision B2)M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, W. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1995.
  18. Experimental heat of reaction based on heats of formation from NIST data for (a) cyclohexane and (b) enthlene: (a) E. J. Prosen, W. H. Johnson and F. D. Rossini, J. Res. NBS, 1946, 37, 51 Search PubMed; (b) M. W. Chase Jr., J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1 Search PubMed.
  19. P. v. R. Schleyer, C. Maerker, A. Dransfield, H. Jiao and N. J. R. Hommess, J. Am. Chem. Soc., 1996, 118, 6317 CrossRef CAS; H. Jiao, R. Nagelkerke, H. A. Kurtz, R. Vaughan Williams, W. T. Borden and P. v. R. Schleyer, J. Am. Chem. Soc., 1997, 119, 5921 CrossRef CAS.
  20. Many product conformations are possible for the bis fused cyclohexanes and we have tried to locate the lowest energy minima of all product conformers to use in determining the â–²Grxn(see Figure 13a, supplementary data).
  21. A reference has proposed that a Marcus treatment (R. A. Marcus, J. Phys. Chem., 1968, 72, 891 see also S. S. Shaik, H. B. Schlegel and S. Wolfe, Theoretical Aspects of Physical Organic Chemistry, John Wiley and Sons, New York, NY, 1992, pp. 34–44) of the data would be more appropriate than a linear relationship. The simplest form of the Marcus equation: ΔG‡=ΔGo‡+ 1/2ΔGrxnGrxn 2 / 16ΔGo‡ is based upon the assumption that the potential surface consists of intersecting parabolas. A slope of 1/2 is enforced by this equation at and near ΔGrxn= 0. However, this treatment is known to be inappropriate for reactions that have no real identity reaction (C. D. Ritchie, C. Kubistry and G. Y. Ting, J. Am. Chem. Soc., 1983, 105, 279) since the potential curves are not identical for reactant and product. Furthermore, setting ΔGo‡ to the value of ΔG‡ calculated when ΔGrxn= 0 for the reactions in this paper gives a nearly linear relationship with slope =1/2, and one which essentially none of the data points fit; the deviations of activation energies from this correlation now follow no obvious pattern Search PubMed.
  22. C. Sandorfy and R. Daudel, C. R. Seances Acad. Sci., Ser. C, 1954, 238, 93 Search PubMed.
  23. (a) R. C. Haddon, Tetrahedron Lett., 1974, 33, 2797 CrossRef; (b) R. C. Haddon, Tetrahedron Lett., 1974, 49, 4303 CrossRef.
  24. R. Hoffmann, A. Imamura and W. Hehre, J. Am. Chem. Soc., 1968, 90, 1499 CrossRef CAS.
  25. (a) J. W. Verhoeven, Recl. Trav. Chim. Pays-Bas, 1980, 99, 369 CAS; (b) J. W. Verhoeven, Recl. Trav. Chim. Pays-Bas, 1980, 99, 143 CAS.
  26. (a) E. Heilbronner and A. Schwesinger, Helv. Chim. Acta, 1975, 58, 936 CrossRef CAS; (b) H. D. Martin and A. Schwesinger, Chem. Ber., 1974, 107, 3143 CAS; (c) R. Hoffmann, Acc. Chem. Res., 1971, 4, 1 CrossRef CAS; (d) R. Gleiter, Angew. Chem., Int. Ed. Engl., 1974, 13, 696 CrossRef; (e) P. Pasman, J. Verhoeven and Th. J. de Boer, Tetrahedron Lett., 1977, 207 CrossRef CAS; (f) R. C. Cookson, J. Henstock and J. Hudec, J. Am. Chem. Soc., 1966, 88, 1060 CrossRef CAS.
  27. C. A. Grob, Angew. Chem., 1969, 81, 343.
  28. (a) M. N. Paddon-Row and R. Hartcher, J. Am. Chem. Soc., 1980, 102, 662 CrossRef CAS; (b) M. N. Paddon-Row and R. Hartcher, J. Am. Chem. Soc., 1980, 102, 671 CrossRef CAS.
  29. S. M. Van der Kerk, J. W. Verhoeven and C. J. M. Stirling, J. Chem. Soc., Perkin Trans. 2, 1985, 1355 RSC.
  30. (a) E. W. Schlag and B. S. Rabinovitch, J. Am. Chem. Soc., 1960, 82, 5996 CrossRef CAS; Y. Jean, L. Salen, J. S. Wright, J. A. Horsley, C. Moser and R. M. Stevens, Pure Appl. Chem., Supp. (23rd Congr.), 1971, 1, 197 Search PubMed; (b) C. T. Genaux, F. Kern and W. D. Walters, J. Am. Chem. Soc., 1953, 75, 6196 CrossRef CAS.
  31. (a) N. W. Moriarty, R. Lindh and G. Karlstrom, Chem. Phys. Lett., 1998, 289, 442 CrossRef CAS; (b) F. Bernardi, A. Bottoni, M. Olivucci, A. Venturini and M. A. Robb, J. Chem. Soc., Faraday Trans., 1994, 90, 1617 RSC; (c) C. Doubleday, J. Am. Chem. Soc., 1993, 115, 11968 CrossRef CAS; (d) K. N. Houk, B. Beno, M. Nendel, K. Black, H. Y. Yoo, S. Wilsey and J. K. Lee, J. Mol. Struct. (THEOCHEM), 1997, 398, 169 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.