Ab initio SCF-MO study of the Staudinger phosphorylation reaction between a phosphane and an azide to form a phosphazene[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Mateo Alajarin, Carlota Conesa and Henry S. Rzepa


Abstract

The lowest energy pathway for a Staudinger reaction between a phosphane and an azide is predicted at the RHF and DFT ab initio SCF-MO level to proceed via an s-cis intermediate 7, followed by cyclisation and elimination of N2 to form a phosphazene. When suitable stabilising substituents are present, 7 can instead isomerise to the isolable s-trans intermediate 9. Natural bond orbital perturbation theory analysis has been employed to identify the factors influencing the relative stability of the s-cis phosphazide and the s-trans isomers.


References

  1. (a) H. Staudinger and J. Meyer, Helv. Chim. Acta, 1919, 2, 635 CrossRef CAS; (b) G. Gololobov and L. F. Kasukhin, Tetrahedron, 1992, 48, 1353 CrossRef CAS; (c) Y. G. Gololobov, I. N. Zhmurova and L. F. Kasukhin, ibid., 1981, 37, 437 Search PubMed; (d) A. W. Johnson, Ylides and Imines of Phosphorus, Wiley, New York, 1993, p. 403 Search PubMed.
  2. J. S. Thayer and R. West, Inorg. Chem., 1964, 3, 406 CrossRef CAS; J. E. Leer, U. Honsberg, Y. Tsuno and I. Forsblad, J. Org. Chem., 1961, 26, 4810.
  3. G. L. Hillhouse, G. V. Goeden and B. L. Haymore, Inorg. Chem., 1982, 21, 2064 CrossRef CAS.
  4. (a) J. R. Goerlich, M. Farkens, A. Fischer, P. G. Jones and R. Schmutzler, Z. Anorg. Allg. Chem., 1994, 620, 707 CAS; A. N. Chernega, M. Y. Antipin, Y. T. Struchkov, I. E. Boldeskul, M. P. Ponomarchuk, L. F. Kasukhin and V. P. Kukhar, Zh. Obshch. Khim., 1984, 54, 1979 CAS; A. N. Chernega, M. Y. Antipin, Y. T. Struchkov, M. P. Ponomarchuk, L. F. Kasukhin and V. P. Kukhar, ibid., 1989, 59, 1256 Search PubMed; A. A. Tolmachev, A. N. Kostyuk, E. S. Kozlov, A. P. Polishchuk and A. N. Chernega, ibid., 1992, 62, 2675 Search PubMed; G. L. Hillhouse, G. V. Goeden and B. L. Haymore, Inorg. Chem., 1982, 21, 2064 CrossRef CAS; C. K. Lowe-Ma, R. A. Nissan and W. S. Wilson, J. Org. Chem., 1990, 55, 3755 CrossRef CAS; R. W. Saalfrank, E. Ackermann, M. Fisher, U. Wirth and H. Zimmerman, Chem. Ber., 1990, 123, 115 CrossRef CAS; J. Kovacs, I. Pinter, M. Kajtar-Peredy and L. Somsak, Tetrahedron, 1997, 53, 1541 CrossRef; M. Hirsch-Kuchma, T. Nicholson, A. Davison, W. M. Davis and A. G. Jones, J. Chem. Soc., Dalton Trans., 1997, 3185 RSC; (b) P. Molina, C. López-Leonardo, J. Llamas-Botía, C. Foces-Foces and C. Fernández-Castaño, Tetrahedron, 1996, 52, 9629 CrossRef CAS; (c) C. G. Chidester, J. Szmuszkovicz, D. J. Duchamp, L. G. Laurian and J. P. Freeman, Acta Crystallogr., Sect. C, 1988, 44, 1080 CrossRef.
  5. J. J. P. Stewart, MOPAC, Quantum Chemistry Program Exchange, University of Indiana, Bloomington, USA, Program 455.
  6. Gaussian program systems available from Gaussian Inc., 4415 Fifth Avenue, Pittsburgh, PA, USA.
  7. H. B. Schlegel, J. Comput. Chem., 1982, 3, 214 CrossRef CAS.
  8. C. Peng and H. B. Schlegel, Israel J. Chem., 1993, 33, 449 Search PubMed.
  9. A. E. Reed, L. A. Curtis and F. Weinhold, Chem. Rev., 1988, 88, 899 CrossRef CAS.
  10. An early and to the best of our knowledge the only previous quantum mechanics study4b on phosphazides, reported the Z configuration of PH3N3CH3 to be 1.6 kcal mol1 more stable than the E isomer at the HF/6-31G** level.
  11. P. v R. Schleyer, M. Kaupp, F. Hampel, M. Bremer and K. Mislow, J. Am. Chem. Soc., 1992, 114, 6791 CrossRef; T. Yamamoto and S. Tomodo, Chem. Lett., 1997, 1069 CAS.
  12. P. Gillespie, F. Ramirez, I. Ugi and D. Marquarding, Angew. Chem., Int. Ed. Engl., 1973, 12, 91 CrossRef.
  13. D. G. Gilheany, in The Chemistry of Organophosphorus compounds, The chemistry of functional groups series, ed. S. Patai, vol. 3, ch. 1, Wiley & Sons, 1994 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.