Parallel mechanisms for the cycloaromatization of enyne allenes[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Thomas S. Hughes and Barry K. Carpenter


Abstract

The Myers–Saito cycloaromatization of enyne allenes is proposed to consist of two parallel mechanisms, one involving a biradical and the other with dipolar character. MCSCF calculations suggest that a nonplanar cyclic allene could be fairly close in enthalpy to the biradical, while the planar zwitterion originally proposed as a possible second intermediate is in fact a transition state for the interconversion of the two enantiomeric cyclic allenes. Competitive trapping experiments rule out the presence of a single intermediate and are consistent with the participation of parallel pathways. The reaction of (Z[hair space])-hepta-1,2,4-trien-6-yne in cyclopentadiene gave an inseparable mixture of two tetracyclic products whose structures were elucidated with 2-D NMR.


References

  1. A. G. Myers, Tetrahedron Lett., 1987, 28, 4493 CrossRef CAS.
  2. R. Nagata, H. Yamanaka, E. Okazaki and I. Saito, Tetrahedron Lett., 1989, 30, 4995 CrossRef CAS.
  3. A. G. Myers, E. Y. Kuo and N. S. Finney, J. Am. Chem. Soc., 1989, 111, 8057 CrossRef CAS.
  4. A. G. Myers, P. S. Dragovich and E. Y. Kuo, J. Am. Chem. Soc., 1992, 114, 9369 CrossRef CAS.
  5. A. G. Myers, P. J. Proteau and T. M. Handel, J. Am. Chem. Soc., 1988, 110, 7212 CrossRef CAS; A. G. Myers and P. J. Proteau, J. Am. Chem. Soc., 1989, 111, 1146 CrossRef CAS.
  6. For representative examples: A. B. Padias and H. K. Hall, Jr., J. Org. Chem., 1987, 52, 4536 Search PubMed; M. B. Zimmt, C. Doubleday, Jr. and N. J. Turro, Chem. Phys. Lett., 1987, 134, 549 CrossRef CAS.
  7. L. Salem and C. Rowland, Angew. Chem., Int. Ed. Engl., 1972, 11, 92 CrossRef CAS.
  8. B. Engels and M. Hanrath, J. Am. Chem. Soc., 1998, 120, 6356 CrossRef CAS.
  9. P. G. Wenthold, J. A. Paulino and R. R. Squires, J. Am. Chem. Soc., 1991, 113, 1845 CrossRef; P. G. Wenthold and R. R. Squires, J. Am. Chem. Soc., 1994, 116, 6961 CrossRef CAS.
  10. (a) P. G. Wenthold, S. G. Wierschke, J. J. Nash and R. R. Squires, J. Am. Chem. Soc., 1994, 116, 7378 CrossRef CAS; (b) P. G. Wenthold, S. G. Wierschke, J. J. Nash and R. R. Squires, J. Am. Chem. Soc., 1993, 115, 12611 CrossRef CAS.
  11. M. Balci and W. M. Jones, J. Am. Chem. Soc., 1980, 102, 7607 CrossRef; M. Balci and W. M. Jones, J. Am. Chem. Soc., 1981, 103, 2874 CrossRef CAS.
  12. R. P. Johnson, Chem. Rev., 1989, 89, 1111 CrossRef CAS; G. Wittig and P. Fritze, Angew. Chem., Int. Ed. Engl., 1966, 5, 846 CrossRef.
  13. M. Christl, M. Braun and G. Müller, Angew. Chem., Int. Ed. Engl., 1992, 31, 473 CrossRef; H. Hopf, H. Berger, G. Zimmermann, U. Nüchter, P. G. Jones and I. Dix, Angew. Chem., Int. Ed. Engl., 1997, 36, 1187 CAS.
  14. For an experimental estimate of the singlet–triplet gap, see: C. F. Logan, J. C. Ma and P. Chen, J. Am. Chem. Soc., 1994, 116, 2137 Search PubMed.
  15. R. O. Angus, Jr., M. W. Schmidt and R. P. Johnson, J. Am. Chem. Soc., 1985, 107, 532 CrossRef.
  16. W. R. Moore and W. R. Moser, J. Org. Chem., 1970, 35, 908 CrossRef CAS.
  17. A. T. Bottini and L. L. Hilton, Tetrahedron, 1975, 31, 1997 CrossRef CAS.
  18. T. Tsuji, T. Shibata, Y. Hienuki and S. Nishida, J. Am. Chem. Soc., 1978, 100, 1806 CrossRef CAS.
  19. K.-L. Noble, H. Hopf and L. Ernst, Chem. Ber., 1984, 117, 455 CAS.
  20. A. G. Myers and B. Zheng, J. Am. Chem. Soc., 1996, 118, 4492 CrossRef CAS.
  21. N. Koga and K. Morokuma, J. Am. Chem. Soc., 1990, 113, 1907.
  22. P. G. Dopico and M. G. Finn, Tetrahedron, 1999, 55, 29 CrossRef CAS.
  23. GAUSSIAN98, Revision A.3, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. ReplogleJ. A. Pople, GaussianInc., Pittsburgh PA, 1998.
  24. MOLCAS Version 401. K. Andersson, M. R. A. Blomberg, M. P. Fülscher, G. Karlström, R. Lindh, P.-Å. Malmqvist, P. Neogrády, J. Olsen, B. O. Roos, A. J. Sadlej, M. Schütz, L. Seijo, L. Serrano-Andrés, P. E. M. SiegbahnP.-O. Widmark, Lund University, Sweden (1997).
  25. GAMESS: M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis and J. A. Montgomery, J. Comput. Chem., 1993, 14, 1347 Search PubMed.
  26. P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 1973, 28, 213 CrossRef CAS.
  27. M. W. Wong, M. J. Frisch and K. B. Wiberg, J. Am. Chem. Soc., 1991, 113, 4776 CrossRef CAS.
  28. PCModel: Serena Software, Box 3076, Bloomington, IN 47402-3076.
  29. J. Suufert, E. Abraham, S. Raeppel and R. Brückner, Liebigs Ann., 1996, 447.
  30. A. T. Dann and W. J. Davies, J. Chem. Soc., 1929, 1050 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.