Supramolecular receptors from α-amino acid-derived lipids

(Note: The full text of this document is currently only available in the PDF Version )

Hiroshi Hachisako, Yutaka Murata and Hirotaka Ihara


Abstract

Anionic lipids derived from L-, D-, DL-glutamic acids, L-aspartic acid, L-lysine, L-ornithine, and L-2,4-diaminobutyric acid were prepared and the way in which structurally related, solvatochromic cationic styryl dyes were incorporated into these lipid aggregates were investigated. The L- or D-glutamic acid-derived lipids with glutaric acid headgroups aggregated to form specific hydrophobic cavities which exhibited inclusion ability for the styryl dyes mainly based on the planarity recognition. The formation of such specific hydrophobic cavities can be achieved not only by introducing amide groups capable of complementary hydrogen bondings between neighbouring lipids in the aggregates but also by introducing appropriate spacer methylenes into, for example, glutarate headgroups. Side-chain methylenes of the amino acid residue were also found to play a significant role in the formation of specific hydrophobic cavities as well as the spacer methylenes. Such cavities were also formed for appropriately designed L-lysine- and L-ornithine-derived lipids. These results indicate that the specific incorporation is not peculiar to the glutamic acid-derived lipids but a general phenomenon for the aggregates from appropriately designed L-amino acid-derived lipids. A difference in the manner of assembly of L-glutamic acid residues between L-, D-isomers, and DL-mixtures in the lipid aggregates is suggested not only by the λmax shift of incorporated styryl dyes but also by aggregate morphologies as evidenced by the TEM observations. These results suggest that the two-dimensional assembly of pure enantiomeric α-amino acid residues in appropriately designed lipids can produce specific hydrophobic cavities unless the DL-mixture phase-separates into two enantiomeric components.


References

  1. H. Hachisako, T. Yamazaki, H. Ihara, C. Hirayama and K. Yamada, J. Chem. Soc., Perkin Trans. 2, 1994, 2, 1671 RSC.
  2. H. Hachisako, Y. Motozato, R. Murakami and K. Yamada, Chem. Lett., 1992, 219 CAS.
  3. H. Hachisako, T. Yamazaki, H. Ihara, C. Hirayama and K. Yamada, J. Chem. Soc., Perkin Trans. 2, 1994, 1681 RSC.
  4. H. Hachisako, T. Yamazaki, R. Murakami and K. Yamada, Liq. Cryst., 1993, 15, 723 CAS.
  5. M. J. Grourke and J. H. Gibbs, Biopolymers, 1971, 10, 795 CAS.
  6. G. Blauer and Z. B. Alfassi, Biochim. Biophys. Acta, 1967, 133, 206 CrossRef CAS.
  7. M. J. Grourke and J. H. Gibbs, Biopolymers, 1967, 6, 586 CrossRef.
  8. S. R. Chadhuri and J. T. Yang, Biochemistry, 1965, 4, 1249 CrossRef.
  9. M. Hatano, M. Yoneyama, I. Ito, T. Nozawa and M. Nakai, J. Am. Chem. Soc., 1969, 91, 2165 CrossRef CAS.
  10. I. Satake and J. T. Yang, Biochem. Biophys. Res. Commun., 1973, 54, 930 CAS.
  11. H. Yamamoto and J. T. Yang, Biopolymers, 1974, 13, 1093 CAS.
  12. H. Ihara, K. Shudo, C. Hirayama, H. Hachisako and K. Yamada, Liq. Cryst., 1996, 20, 807 CAS.
  13. H. Ihara, K. Shudo, M. Takafuji, C. Hirayama, H. Hachisako and K. Yamada, Jpn. J. Polym. Sci. Tech., 1995, 52, 606 Search PubMed.
  14. H. Ihara, H. Hachisako, C. Hirayama and K. Yamada, Liq. Cryst., 1987, 2, 215 CAS.
  15. M. Bergmann and L. Zervas, Ber., 1932, 65, 1192 Search PubMed.
  16. N. Izumiya and S. Makisumi, Nippon Kagaku Zasshi, 1957, 78, 662 CAS.
  17. H. Ihara, H. Hachisako, C. Hirayama and K. Yamada, J. Chem. Soc., Chem. Commun., 1992, 1244 RSC.
  18. H. Hachisako, H. Ihara, T. Kamiya, C. Hirayama and K. Yamada, J. Chem. Soc., Chem. Commun., 1997, 19 RSC.
  19. H. Hachisako, H. Ihara and K. Yamada, Recent Res. Dev. Pure Applied Chem., 1998, 2, 59 Search PubMed.
  20. H. Ihara, M. Yoshitake, M. Takafuji, T. Yamada, T. Sagawa, C. Hirayama and H. Hachisako, Liq. Cryst., 1999, 26, 1021 CrossRef CAS.
  21. M. Takafuji, H. Ihara, C. Hirayama, H. Hachisako and K. Yamada, Liq. Cryst., 1995, 18, 97.
  22. N. Nakashima, H. Fukushima and T. Kunitake, Chem. Lett., 1981, 1555 CAS.
  23. A. H. Herz, Adv. Colloid Interface Sci., 1977, 8, 237 CrossRef CAS.
  24. C. Hirose and L. Sepúlveda, J. Phys. Chem., 1981, 85, 3689 CrossRef CAS.
  25. C. A. Bunton, F. Rivera and L. Sepúlveda, J. Org. Chem., 1978, 43, 1166 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.