Gas-phase reactions of the dichlorocarbene radical cation

(Note: The full text of this document is currently only available in the PDF Version )

Eric D. Nelson, Shane E. Tichy and Hilkka I. Kenttämaa


Abstract

The gaseous dichlorocarbene radical cation is reported to behave as a highly reactive electrophile rather than a radical toward various organic substrates in a Fourier-transform ion cyclotron resonance mass spectrometer. For example, the carbene ion reacts with alkyl halides (R–X) via fast electrophilic addition to form a covalently bonded, internally excited intermediate Cl2C–X–R+˙. The intermediate fragments either homolytically or heterolytically to produce net halogen atom or halide ion transfer products, respectively. The observed ionic reaction product is determined by the ionization energies of the two possible neutral fragments (CCl2X˙ and R˙). The fragment with the lower ionization energy preferentially retains the charge. Most reactions observed for heteroatom-containing organic compounds also appear to follow this electrophilic addition–elimination mechanism. In some cases, addition of carbonyl compounds to the carbene ion is followed by homolytic cleavage of the C–O bond to yield a new carbene radical cation.


References

  1. (a) W. Kirmse, Carbene Chemistry, Academic Press, New York, 1971 Search PubMed; (b) M. S. Platz, Kinetics and Spectroscopy of Carbenes and Biradicals, Plenum Press, New York, 1990 Search PubMed; (c) W. Kirmse, Advances in Carbene Chemistry, U. H. Brinker, Ed., JAI Press, Greenwich, CT, 1994; Vol. 1 Search PubMed.
  2. (a) D. Bethell and V. D. Parker, Acc. Chem. Res., 1988, 21, 399; (b) V. Parker and D. Bethell, J. Am. Chem. Soc., 1987, 109, 5066 CrossRef CAS.
  3. 1 kcal = 4.18 kJ.
  4. W. Reuter and S. D. Peyerimhoff, Chem. Phys., 1992, 160, 11 CrossRef CAS.
  5. T. Bally, S. Matzinger, L. Truttman, M. S. Platz, A. Admasu, F. Gerson, A. Arnold and R. Schmidlin, J. Am. Chem. Soc., 1993, 115, 7007 CrossRef CAS.
  6. D. G. Stoub and J. L. Goodman, J. Am. Chem. Soc., 1997, 119, 11110 CrossRef CAS.
  7. (a) J. Berkowitz, J. Chem. Phys., 1978, 69, 3044 CrossRef CAS; (b) C. Wesdemiotis and F. W. McLafferty, Tetrahedron Lett., 1981, 22, 3479 CrossRef CAS.
  8. P. C. Burgers, A. A. Mommers and J. L. Holmes, J. Am. Chem. Soc., 1983, 105, 5976 CrossRef CAS.
  9. P. C. Burgers, G. A. McGibbon and J. K. Terlouw, Chem. Phys. Lett., 1994, 222, 129 CrossRef CAS.
  10. F. A. Wiedmann, J. Cai and C. Wesdemiotis, Rapid Commun. Mass, Spectrom., 1994, 10, 804.
  11. G. A. McGibbon, C. A. Kingsmill and J. K. Terlouw, Chem. Phys. Lett., 1994, 222, 539 CrossRef CAS.
  12. J. K. Terlouw, J. Wezenberg, P. C. Burgers and J. L. Holmes, J. Chem. Soc., Chem. Commun., 1983, 1121 RSC.
  13. J. M. Buschek, J. L. Holmes and J. K. Terlouw, J. Am. Chem. Soc., 1987, 109, 7321 CrossRef CAS.
  14. D. Sülzle, T. Drewello, B. L. M. van Baar and H. Schwarz, J. Am. Chem. Soc., 1988, 110, 8330 CrossRef.
  15. C. Aubry, M. J. Polce, J. L. Holmes, P. M. Mayer and L. Radom, J. Am. Chem. Soc., 1997, 119, 9039 CrossRef CAS.
  16. The reactivity of carbene radical anions has been examined. See for example: M. Born, S. Ingemann and N. M. M. Nibbering, J. Chem. Soc., Perkin Trans. 2, 1996, 2537 Search PubMed.
  17. K. K. Thoen, R. L. Smith, J. J. Nousiainen, E. D. Nelson and H. I. Kenttämaa, J. Am. Chem. Soc., 1996, 118, 8669 CrossRef.
  18. L. C. Zeller, J. M. Kennedy, H. I. Kenttämaa and J. E. Campana, Anal. Chem., 1993, 65, 2116 CrossRef CAS.
  19. (a) A. G. Marshall, T. C. L. Wang and T. L. Ricca, J. Am. Chem. Soc., 1985, 107, 7893 CrossRef CAS; (b) A. G. Marshall, T. L. Ricca and T. C. L. Wang, U.S. Patent 4,761,545, 1988.
  20. (a) P. Lin and H. I. Kenttämaa, Org. Mass Spectrom., 1992, 27, 1155 CAS; (b) R. L. Smith, L. J. Chyall, K. M. Stirk and H. I. Kenttämaa, Org. Mass. Spectrom., 1993, 28, 1623 CAS; (c) D. T. Leeck, K. M. Stirk, L. C. Zeller, L. K. M. Kiminkinen, L. M. Castro, P. Vainiotalo and H. I. Kenttämaa, J. Am. Chem. Soc., 1994, 116, 3028 CrossRef CAS; (d) R. Li, R. L. Smith and H. I. Kenttämaa, J. Am. Chem. Soc., 1996, 118, 5056 CrossRef CAS.
  21. T. Su and W. J. Chesnavich, J. Chem. Phys., 1982, 76, 5183 CrossRef CAS.
  22. (a) J. E. Bartmess and R. M. Georgiadis, Vacuum, 1983, 33, 149 CrossRef CAS; (b) K. J. Miller and J. A. Savchik, J. Am. Chem. Soc., 1979, 101, 7206 CrossRef CAS.
  23. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzwewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Repongle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordan, C. Gonzalez and J. A. Pople, Gaussian Inc., Pittsburgh PA, 1995.
  24. A. P. Scott and L. Radom, J. Phys. Chem., 1996, 100, 16502 CrossRef CAS.
  25. S. G. Lias, Ionization Energy Evaluation in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. W. G. Mallard and P. J. Linstrom, March 1998, National Institute of Standards and Technology, Gaithersburg MD, 20899 (http://webbook.nist.gov) Search PubMed.
  26. See for example: K. B. Wiberg, C. M. Hadad, P. R. Rablen and J. Cioslowski, J. Am. Chem. Soc., 1992, 114, 8644 Search PubMed.
  27. This result suggests that the ionization energy value of 9.27 eV reported in reference 23 understates the adiabatic ionization energy of CCl2+● by 0.2–0.3 eV.
  28. N. A. McAskill, Aust. J. Chem., 1970, 23, 893 CAS.
  29. (a) R. B. Sharma, D. K. S. Sharma, K. Hiraoka and P. Kebarle, J. Am Chem. Soc., 1985, 107, 3747 CrossRef CAS; (b) J. H. J. Dawson, W. G. Henderson, R. M. O'Malley and K. R. Jennings, Int. J. Mass Spectrom. Ion Phys., 1973, 11, 61 CrossRef CAS; (c) D. K. S. Sharma, S. W. de Höjer and P. Kebarle, J. Am. Chem. Soc., 1985, 107, 3757 CrossRef CAS.
  30. P. C. Burgers, J. L. Holmes and J. K. Terlouw, J. Chem. Soc., Chem. Commun., 1982, 642 RSC.
  31. J. Fossey, D. Lefort and J. Sorba, Free Radicals in Organic Chemistry, Wiley, New York, 1995, Chapter 6 Search PubMed.
  32. Based on the relative hydride anities of CF3+(which is similar to CCl2+●) and the allyl cation from A. G. Harrison, Chemical Ionization Mass Spectrometry, 2nd edition, CRC, Ann Arbor, 1992, p. 21; hydride anities generally correlate well with halide anities Search PubMed.
  33. A. G. Harrison, C. D. Finney and J. A. Sherk, Org. Mass Spectrom., 1971, 5, 1313 CAS.
  34. W. J. van der Hart, J. Am. Soc. Mass Spectrom., 1999, 10, 575 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.