Kinetics and mechanism of the hydrogen peroxide oxidation of a pentafluorophenyl-substituted iron(III) porphyrin[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Ian D. Cunningham, Timothy N. Danks, Keith T. A. O’Connell and Peter W. Scott


Abstract

Kinetic analysis of the (F20TPP)FeCl-catalysed H2O2 oxidation of 3-hydroxy-2-(trans-4-tert-butylcyclohexyl)methylnaphtho-1,4-quinone is consistent with rapid reaction of the organic substrate with an oxoperferryl intermediate [(F20TPP˙+)FeIV[double bond, length half m-dash]O] formed in the first and rate-limiting step. A second-order rate constant for oxidation of the catalyst of 22 ± 5 dm3 mol–1 s–1 is found, a value lower than previously reported. In the absence of the organic substrate, H2O2 oxidises the catalyst to an oxoferryl species (F20TPP)FeIV[double bond, length half m-dash]O, probably via the oxoperferryl species. This oxoferryl compound is itself bleached by H2O2 with a second-order rate constant of 0.081 ± 0.004 dm3 mol–1 s–1 probably involving oxidation of the porphyrin ring.


References

  1. (a) B. Meunier, Chem. Rev., 1992, 92, 1411 CrossRef CAS; (b) S. Quici, S. Banfi and G. Pozzi, Gazz. Chim. Ital., 1993, 123, 597 CAS; (c) C. K. Chang and F. Ebina, J. Chem. Soc., Chem. Commun., 1981, 778 RSC.
  2. T. G. Traylor, C. Kim, J. L. Richards, F. Xu and C. L. Perrin, J. Am. Chem. Soc., 1995, 117, 3468 CrossRef CAS.
  3. (a) T. G. Traylor, S. Tsuchiya, Y.-S. Byun and C. Kim, J. Am. Chem. Soc., 1993, 115, 2775 CrossRef CAS; (b) I. Artaud, K. Ben-Aziza and D. Mansuy, J. Org. Chem., 1993, 58, 3373 CrossRef CAS; (c) G. J. Harden and M. M. Coombs, J. Chem. Soc., Perkin Trans. 1, 1995, 3037 RSC; (d) E. Baciocchi, O. Lanzalunga and A. Lapi, Tetrahedron. Lett., 1995, 36, 3547 CrossRef CAS.
  4. J. E. Lyons, P. E. Ellis Jr. and H. K. Myers Jr., J. Catal., 1995, 155, 59 CrossRef CAS.
  5. J. R. Wolf, C. G. Hamaker, J.-P. Djukic, T. Kodadek and K. L. Woo, J. Am. Chem. Soc., 1995, 117, 9194 CrossRef CAS.
  6. E. Baciocchi and M. Ioele, J. Org. Chem., 1995, 34, 4896.
  7. G. Harden, J. Chem. Soc., Perkin Trans. 2, 1995, 1883 RSC.
  8. M. Takeuchi, M. Kodera, K. Kano and Z. Yoshida, J. Mol. Catal. A: Chem., 1996, 113, 51 CrossRef CAS.
  9. R. Iwanejko, P. Battioni, D. Mansuy and T. Mlodnicka, J. Mol. Catal. A: Chem., 1996, 111, 7 CrossRef CAS.
  10. K. A. Lee and W. Nam, J. Am. Chem. Soc., 1997, 119, 1916 CrossRef CAS; A. K. Le and W. Nam, Bull. Korean Chem. Soc., 1996, 17, 669.
  11. B. Pietzyk, L. Froehlich and B. Goeber, Pharmazie, 1996, 51, 654 Search PubMed; B. Pietzyk, L. Froehlich and B. Goeber, Pharmazie, 1995, 50, 747 Search PubMed.
  12. I. D. Cunningham, T. N. Danks, K. T. A. O'Connell and P. W. Scott, J. Org. Chem., in press. Compound 2 is oxidised across the C2,C3 C=C to yield an epoxide, identified in crude form from its NMR spectrum. This epoxide further reacts with unreacted 2 and methanol to yield 2° products which have been characterised and which can only arise from an epoxide. The only 2° product likely to show UV-Vis absorbance similar to 2 is a ‘dehydro-dimer’, but this only forms in much more concentrated solutions of 2 than used here Search PubMed.
  13. B. G. Cox, Modern Liquid Phase Kinetics, Oxford University Press, Oxford, 1994 Search PubMed.
  14. T. C. Bruice, Acc. Chem. Res., 1991, 24, 243 CrossRef CAS; E. Gopinath and T. C. Bruice, J. Am. Chem. Soc., 1991, 113, 4657, 6090, 6095; R. Panicucci and T. C. Bruice, J. Am. Chem. Soc., 1990, 112, 6063 CrossRef CAS; P. Battioni, J. P. Renaud, J. F. Bartoli, M. Reina-Artiles, M. Fort and D. Mansuy, J. Am. Chem. Soc., 1988, 110, 8462 CrossRef CAS; D. Mansuy, Pure Appl. Chem., 1987, 59, 759 CrossRef CAS.
  15. (a) K. Murata, R. Panicucci, E. Gopinath and T. C. Bruice, J. Am. Chem. Soc., 1990, 112, 6072 CrossRef CAS; (b) G.-X. He and T. C. Bruice, J. Am. Chem. Soc., 1991, 113, 2747 CrossRef CAS.
  16. See ref. 2. A similar value was obtained using the alkene β-carotene.
  17. pKa values (in H2O) for hydroxynaphthoquinones are typically 4–5, see L. Fieser and M. Fieser, J. Am. Chem. Soc., 1934, 56, 1565 Search PubMed.
  18. Indeed, Traylors own results [see refs. 2 and 3(a)], which show the same rate constant for use of 2,4,6-tri-tert-butylphenol or β-carotene (the former at levels probably high enough to add significantly to levels of H3O+) appear to rule out a lyonium ion effect.
  19. I. D. Cunningham, B. G. Cox, J. N. Hay, I. Hamerton, T. N. Danks and S. Gunathilagan, unpublished work.
  20. A definitive description of the UV-Vis changes associated with the formation of high-valent iron oxo porphyrin complexes is hard to find, particularly with respect to the Soret band. The situation is complicated by solvent variations and variations due to ligation by solvent and added ligands. Furthermore ligation can be differential for the various oxidised states. (a) J. T. Groves and Y. Watanabe, J. Am. Chem. Soc., 1986, 108, 7834 CrossRef CAS; (b) J. T. Groves, R. C. Haushalter, M. Nakamura, T. E. Nemo and B. J. Evans, J. Am. Chem. Soc., 1981, 103, 2884 CrossRef CAS; (c) J. T. Groves and Y. Watanabe, J. Am. Chem. Soc., 1986, 108, 507 CrossRef CAS; (d) S. Hashimoto, Y. Tatsuno and T. Kitagawa, J. Am. Chem. Soc., 1987, 109, 8096 CrossRef CAS; (e) A. Gold, K. Jayaraj, P. Doppelt, R. Weiss, G. Chottard, E. Bill, X. Ding and A. X. Trautwein, J. Am. Chem. Soc., 1988, 110, 5756 CrossRef CAS; (f) H. Sagimoto, H.-C. Tung and D. T. Sawyer, J. Am. Chem. Soc., 1988, 110, 2465 CrossRef CAS; (g) K. Yamaguchi, Y. Watanabe and I. Morishima, J. Chem. Soc., Chem. Commun., 1992, 1721 RSC; (h) N. Colclough and J. R. Lindsay Smith(see among others J. Chem. Soc., Perkin Trans. 2, 1994, 1139). In summary, it appears that (i) conversion to the (por●+)FeIV=O usually gives a Soret band ca. 406 nm, but with ε≈ 50% of the original and a small peak ca. 680 nm and (ii) conversion to (por)FeIV=O seems to give a Soret band at 406–426 nm, but also a small band ca. 550 nm Search PubMed.
  21. H. Fuji, Chem. Lett., 1994, 1491 CAS.
  22. Typical UV-Vis spectra for oxoferryl porphyrins are shown in ref. 20(h) and references therein.
  23. T. G. Traylor and F. Xu, J. Am. Chem. Soc., 1987, 109, 6201 CrossRef CAS.
  24. K. R. Bretscher and P. Jones, J. Chem. Soc., Dalton Trans., 1988, 2273 RSC.
  25. P. S. Traylor, D. Dolphin and T. G. Traylor, J. Chem. Soc., Chem. Commun., 1984, 279 RSC.
  26. (a) M. J. Nappa and C. A. Tolman, Inorg. Chem., 1985, 24, 4711 CrossRef CAS; (b) D. R. Leonord and J. R. Lindsay Smith, J. Chem. Soc., Perkin Trans. 2, 1991, 25 RSC.
  27. K. R. Bretscher and P. Jones, J. Chem. Soc., Dalton Trans., 1988, 2267 RSC.
  28. S. E. J. Bell, P. R. Cooke, P. Inchley, D. R. Leonord, J. R. Lindsay Smith and A. Robbins, J. Chem. Soc., Perkin Trans. 2, 1991, 549 RSC.
  29. J. T. Groves and Y. Watanabe, J. Am. Chem. Soc., 1986, 108, 7836 CrossRef CAS.
  30. G. M. Clore, M. R. Hollaway, C. Orengo, J. Peterson and M. T. Wilson, Inorg. Chim. Acta, 1981, 56, 143 CrossRef CAS.
  31. J. R. Lindsay Smith and R. J. Lower, J. Chem. Soc., Perkin Trans. 2, 1991, 31 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.