Azomethine dyes revisited. Photobleaching of azomethine dyes under photoreducing conditions

(Note: The full text of this document is currently only available in the PDF Version )

Zdzisław Kucybała, Ilona Pyszka, Bronislaw Marciniak, Gordon L. Hug and Jerzy Pączkowski


Abstract

This paper presents the results of a study on the bleaching process of azomethine dyes (AMDs) during their irradiation in the presence of an electron donor N-phenylglycine (NPG). The bleaching process and singlet oxygen formation for the dyes under study occurred with very low quantum yields. Experimental results showed that the bleaching of azomethine dyes may be due to both singlet and triplet states. The prominence of the triplet state was suggested by an analysis of double reciprocal plots for bleaching quantum yields and [NPG]. Additional support for this mechanism was given by results from laser flash experiments with a cyclized form of the dye. In these experiments, a transient optical absorption was attributed to a triplet state, and this state was quenched by NPG with a rate constant of 1.2 × 107 M–1 s–1. A similar experiment performed for a branched dye shows a broad, weak transient absorption which may also indicate a small amount of triplet-state formation. Changes in the dye structure affected the rate of photobleaching. The introduction of heavy atoms into a dye molecule only slightly increased the color-loss efficiency. The decrease or restriction of the freedom of the phenyl-group rotation did not increase the rate of the bleaching process. Significant influence of the azomethine dye structure on photobleaching rates was observed only when there was a strong electron withdrawing group in the R2 position. The most significant increase of the bleaching rate was observed when the branching of the dye was limited, especially when the rotation of substituents around the C[double bond, length half m-dash]N bond was prevented by structural constraints.


References

  1. P. W. Vittum and A. J. Weissberger, J. Photogr. Sci., 1954, 2, 81 Search PubMed.
  2. G. Tacconi, G. Marinoni, P. P. Righetti and G. Desimoni, J. Prakt. Chem., 1980, 322, 674 CAS.
  3. Z. Kucybała and J. Gaca, J. Prakt. Chem., 1988, 330, 435 CAS.
  4. W. F. Smith, W. G. Herkstoeter and K. L. Eddy, Photogr. Sci. Eng., 1976, 20, 140 Search PubMed.
  5. G. H. Brown, B. Graham, P. W. Vittum and A. Weissberger, J. Am. Chem. Soc., 1951, 73, 913 CrossRef.
  6. E. B. Knott and P. J. S. Pauwels, J. Org. Chem., 1968, 33, 2120 CrossRef CAS.
  7. Z. Kucybała and J. Pączkowski, Polymer, 1993, 34, 1558 CrossRef CAS.
  8. O. Valdes-Aquilera, C. P. Phatak, J. Shi, D. Watson and D. C. Neckers, Macromolecules, 1993, 25, 541.
  9. W. F. Smith and B. W. Rosster, J. Am. Chem. Soc., 1967, 89, 717 CrossRef CAS.
  10. M. Takuji, M. Akihiro and A. Youichi, J. Soc. Photogr. Sci. Technol. Jpn., 1986, 49, 393 Search PubMed.
  11. M. Takuji, M. Akihiro and A. Youichi, J. Soc. Photogr. Sci. Technol. Jpn., 1987, 50, 128 Search PubMed.
  12. M. Takuji, O. Takanori and A. Youichi, J. Soc. Photogr. Sci. Technol. Jpn., 1989, 52, 532 Search PubMed.
  13. N. Grossman, V. Wehner, A. Weise and B. Winnig, J. Prakt. Chem., 1988, 330, 204 CrossRef.
  14. J. Gaca, K. Kozłowski, M. Trzcińska and Z. Kucybała, J. Prakt. Chem., 1986, 328, 149 CAS.
  15. D. P. Maier, G. P. Hopp and T. H. Regan, Org. Mass Spectrom., 1969, 2, 1289 CAS.
  16. These specic conditions of photobleaching process are prescribed by the conditions required during a photopolymerization using this technique.
  17. A. P. Schaap, A. L. Thayer, E. C. Blossey and D. C. Neckers, J. Am. Chem. Soc., 1975, 97, 3741 CrossRef CAS.
  18. E. C. Blossey, D. C. Neckers, A. L. Thayer and A. P. Schaap, J. Am. Chem. Soc., 1973, 95, 5820 CrossRef CAS.
  19. J. Pączkowski, D. C. Neckers and B. Pączkowska, Macromolecules, 1986, 19, 863 CrossRef.
  20. R. K. Summerbell and D. J. J. Berger, J. Am. Chem. Soc., 1959, 81, 633 CrossRef CAS.
  21. (a) V. Nagarajan and R. W. Fessenden, J. Phys. Chem., 1985, 89, 2330 CrossRef CAS; (b) K. Bobrowski, B. Marciniak and G. L. Hug, J. Am. Chem. Soc., 1992, 114, 10279 CrossRef.
  22. In a classical system development involves reduction of the silver and in color photography it is the consequent oxidation of the developer which reacts with color coupler to produce an image dye. A typical system involves a derivative of benzene-1,4-diamine as developer; see: R. P. Wayne, Principles and Applications of Photochemistry, Oxford University Press, Oxford, 1988 Search PubMed.
  23. W. F. Smith, Jr., J. Phys. Chem., 1964, 68, 1501.
  24. C. Reichard, Solvents and Solvents Effects in Organic Chemistry, VCH, Weinheim, 1988 Search PubMed.
  25. B. Strehmel, H. Seifert and W. Rettig, J. Phys. Chem., 1997, 101, 2232 Search PubMed.
  26. W. G. Herkstroeter, J. Am. Chem. Soc., 1973, 95, 8686 CrossRef CAS.
  27. (a) H. Ephardt and P. Fromherz, J. Phys. Chem., 1989, 93, 7717 CrossRef CAS; (b) H. Ephardt and P. Fromherz, J. Phys. Chem., 1991, 95, 6792; (c) P. Fromherz and A. Heilemann, J. Phys. Chem., 1992, 96, 6964.
  28. W. G. Herkstroeter, J. Am. Chem. Soc., 1975, 97, 3090 CrossRef CAS.
  29. W. F. Smith, W. G. Herkstroeter and K. L. Eddy, J. Am. Chem. Soc., 1975, 97, 2764 CrossRef.
  30. (a) R. S. Davidson and P. R. Steiner, J. Chem. Soc., Chem. Commun., 1971, 1682 Search PubMed; (b) R. S. Davidson, P. R. Harrison and P. R. Steiner, J. Chem. Soc., Chem. Commun., 1971, 3480 Search PubMed; (c) R. F. Bartholomew, D. R. G. Brimage and R. S. Davidson, J. Chem. Soc., Chem. Commun., 1971, 3482 Search PubMed.
  31. W. G. Herkstroeter, J. Am. Chem. Soc., 1976, 98, 6210 CrossRef CAS.
  32. D. Rehm and A. Weller, Isr. J. Chem., 1970, 8, 259 CAS.
  33. G. Pandey, Photoinduced Electron Transfer (PET) in Organic Synthesis, in Top. Curr. Chem., 1993, 168, 175 Search PubMed.
  34. Z. Kucybała and J. Pączkowski, unpublished work. The mass spectra and NMR data of the product formed during irradiation of the dye in presence of N-phenylglycine indicate complex molecule containing in its structure both the dye and N-phenylglycine moiety.
  35. R. A. Marcus, Annu. Rev. Phys. Chem., 1969, 15, 155 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.