Ionization potentials of porphyrins and phthalocyanines. A comparative benchmark study of fast improvements of Koopman's Theorem

(Note: The full text of this document is currently only available in the PDF Version )

Dennis P. Piet, David Danovich, Han Zuilhof and Ernst J. R. Sudhölter


Abstract

The vertical ionization potentials (IP's) of a variety of free-base and zinc porphyrins and free-base and zinc phthalocyanine, including all those for which experimental ultraviolet photoelectron spectral (UPS) data are presently known, are computed using six semiempirical molecular orbital methods. Koopman's Theorem (KT), second order outer valence Green's function methods with a large number of active orbitals (OVGF), and explicit computation of the relative energies of neutral species and vertically ionized radical cations (ΔSCF IP) are used in combination with both PM3 and AM1 parameterizations, and the results are compared to experimental data. On average, both the OVGF and ΔSCF IP approximations reproduce the first vertical IP's, as determined by UPS, far more accurately than KT at minimal extra computational costs. Over the full set of available experimental data, the average error for the lowest IP with both OVGF and ΔSCF IP is only ca. 40% of that of KT (AM1 data, AM1 being generally more accurate than PM3). Inclusion of higher order terms in the OVGF treatment (third order truncation or full expression of the self-energy part) does not affect the computed IP's significantly, but inclusion of a large number of active orbitals in the OVGF technique is shown to be essential for this class of molecules. In agreement with the experimental data, zinc porphyrins and zinc phthalocyanines are computed to be better electron donors than their free-base analogues. Conformational differences of the peripheral substituents have no significant effects on the valence IP's.


References

  1. See for example: N. B. McKeown, Phthalocyanine Materials: Synthesis, Structure and Function, Cambridge University Press, Cambridge, 1998, ch. 6, pp. 126–139 Search PubMed.
  2. (a) C. F. van Nostrum, F. B. G. Benneker, N. Veldman, A. L. Spek, A.-J. Schouten and R. J. M. Nolte, Recl. Trav. Chim. Pays-Bas, 1994, 113, 109 CAS; (b) C. F. van Nostrum, F. B. G. Benneker, H. Brussaard, H. Kooijman, N. Veldman, A. L. Spek, J. Schoonman, M. C. Feiters and R. J. M. Nolte, Inorg. Chem., 1996, 35, 959 CrossRef CAS.
  3. (a) J. T. Groves, M. Haushalter, M. Nakamura and B. J. Evans, J. Am. Chem. Soc., 1981, 103, 2884 CrossRef CAS; (b) T. J. McMurry and J. T. Groves, in Cytochrome P-450: Structure, Mechanism and Biochemistry, ed. P. Ortiz de Montellano, Plenum Press, New York, 1986 Search PubMed.
  4. (a) J. M. Kroon, R. B. M. Koehorst, M. van Dijk, G. M. Sanders and E. J. R. Sudhölter, J. Mater. Chem., 1997, 7, 615 RSC; (b) D. P. Piet, H. Zuilhof and E. J. R. Sudhölter, unpublished work.
  5. The adiabatic IP's of free-base porphyrin and free-base and zinc phthalocyanine were computed to be only 1–2 kcal mol–1 lower than the vertical IP with the methods described in the Computational details section. Given the significant size of the π-system, this difference is expected to be small for all tetrapyrroles, and is thus near-constant as well. D. P. Piet, H. Zuilhof and E. J. R. Sudhölter, unpublished results.
  6. (a) D. Schlettwein and N. R. Armstrong, J. Phys. Chem., 1994, 98, 11771 CrossRef CAS; (b) S. V. Kudrevich and J. E. van Lier, Can. J. Chem., 1996, 74, 1718 CAS.
  7. A. Koopman, Physica, 1933, 1, 104 Search PubMed.
  8. T. Bally, in Radical Ionic Systems, eds. H. Lund and M. Shiotani, Kluwer Academic Publishers, Dordrecht, 1991, pp. 3–54 Search PubMed.
  9. E. Heilbronner, in The Chemistry of Alkanes and Cycloalkanes, ed. S. Patai, Wiley, New York, 1992, pp. 455–529 Search PubMed.
  10. (a) T. H. Dunning Jr. and P. J. Hay, in Modern Theoretical Chemistry, ed. H. F. Schaefer III, Plenum, New York, 1976, pp. 1–28 Search PubMed; (b) T. H. Dunning Jr., J. Chem. Phys., 1989, 90, 1007 CrossRef CAS; (c) A. D. McLean and G. S. Chandler, J. Chem. Phys., 1980, 72, 5639 CrossRef CAS; (d) L. Åsbrink, C. Fridh and E. Lindholm, Chem. Phys. Lett., 1977, 52, 63 CrossRef CAS.
  11. D. P. Piet, H. Zuilhof and E. J. R. Sudhölter, unpublished results.
  12. (a) P. G. Gassman, A. Ghosh and J. Almlöf, J. Am. Chem. Soc., 1992, 114, 9990 CrossRef CAS; (b) A. Ghosh and J. Almlöf, Chem. Phys. Lett., 1993, 213, 519 CrossRef CAS; (c) A. Ghosh, J. Phys. Chem., 1994, 98, 11004 CrossRef CAS; (d) A. Ghosh, P. G. Gassman and J. Almlöf, J. Am. Chem. Soc., 1994, 116, 1932 CrossRef CAS.
  13. L. S. Cederbaum, J. Phys. B, 1975, 8, 290 CrossRef CAS.
  14. (a) D. Danovich, V. Zakrzewski and E. Domnina, J. Mol. Struct. (THEOCHEM), 1989, 188, 159 CrossRef; (b) D. Danovich, Y. Apeloig and S. Shaik, J. Chem. Soc., Perkin Trans. 2, 1993, 321 RSC; (c) Y. Apeloig and D. Danovich, Organometallics, 1996, 15, 350 CrossRef CAS.
  15. D. Danovich, in Encyclopedia of Computational Chemistry, Vol. 2: Semiempirical methods, ed. P. v. R. Schleyer, Wiley, New York, 1998, pp. 1190–1202 Search PubMed.
  16. (a) L. S. Cederbaum and W. Domcke, Adv. Chem. Phys., 1977, 36, 206; (b) W. von Niessen, J. Schirmer and L. S. Cederbaum, Comput. Phys. Rep., 1984, 1, 57 Search PubMed.
  17. J. V. Ortiz, V. G. Zakrzewski and O. Dolgounitcheva, in Conceptual Trends in Quantum Chemistry, ed. E. S. Kryachko, Kluwer, Dordrecht, 1997, vol. 3, pp. 465–517 Search PubMed.
  18. M. J. S. Dewar, E. G. Zoebish, E. F. Healy and J. P. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902 CrossRef.
  19. J. P. P. Stewart, J. Comput. Chem., 1989, 10, 209 CrossRef CAS.
  20. MOPAC-93, J. P. P. Stewart and Fujitsu Limited, Tokyo, Japan, Fujitsu Limited, 1993.
  21. GAUSSIAN94, Revision E.2, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1995.
  22. (a) A. C. Hurley, Introduction to the electron theory of small molecules, Academic Press, New York, 1976, pp. 242–253 Search PubMed; (b) M. J. S. Dewar, The molecular orbital theory of organic chemistry, McGraw-Hill, New York, 1969, pp. 250–277 Search PubMed; (c) In principle OVGF can be used for open-shell species when calculated with Dewar's half-electron method, but it can not be used on UHF wavefunctions within the present program realization in MOPAC. Use of OVGF on UHF-optimized geometries with single-point RHF wavefunctions (OVGF on RHF/AM1//UHF/AM1) does not yield improved data over OVGF on RHF/AM1.
  23. A. R. Leach, Molecular Modelling, Principles and Applications, Addison Wesley Longman Ltd., Harlow, 1996, pp. 25–130 Search PubMed.
  24. P. Depuis, R. Roberge and C. Sandorfy, Chem. Phys. Lett., 1980, 75, 434 CrossRef.
  25. (a) M. Gouterman, G. Wagniere and L. C. Snyner, J. Mol. Spectrosc., 1963, 11, 108 CrossRef CAS; (b) C. Weiss, H. Kobayashi and M. Gouterman, J. Mol. Spectrosc., 1965, 16, 415 CrossRef CAS; (c) M. Gouterman, in The Porphyrins, ed. D. Dolphin, Academic Press, New York, 1978; Vol. III. Part A, Physical Chemistry Search PubMed.
  26. S. Kitagawa, I. Morsihima, T. Yonezawa and N. Sato, Inorg. Chem., 1979, 18, 1345 CrossRef CAS.
  27. A. Ghosh, J. Am. Chem. Soc., 1995, 117, 4693.
  28. (a) J.-H. Fuhrhop, K. M. Kadish and D. G. Davis, J. Am. Chem. Soc., 1973, 95, 5140 CrossRef CAS; (b) J. G. Goll, K. T. Moore, A. Ghosh and M. J. Therien, J. Am. Chem. Soc., 1996, 118, 8344 CrossRef CAS.
  29. D. Wöhrle, L. Kreienhoop and D. Schlettwein, in Phthalocyanines: Properties and Applications, vol. 4, eds. C. C. Leznoff and A. B. P. Lever, VCH, New York, 1996, pp. 219–284 Search PubMed.
  30. S. C. Khandelwal and J. L. Roebber, Chem. Phys. Lett., 1975, 34, 355 CrossRef CAS.
  31. (a) T. D. Brennan, W. R. Scheidt and J. A. Shelnutt, J. Am. Chem. Soc., 1988, 110, 3919 CrossRef CAS; (b) K. M. Barkigia, L. Chantranupong, K. M. Smith and J. Fajer, J. Am. Chem. Soc., 1988, 110, 7566 CrossRef CAS; (c) K. M. Barkigia, M. D. Berber, M. D. J. Fajer, C. J. Medforth, M. W. Renner and K. M. Smith, J. Am. Chem. Soc., 1990, 112, 8851 CrossRef CAS.
  32. (a) M. J. Hamor, T. A. Hamor and J. L. Hoard, J. Am. Chem. Soc., 1964, 86, 1968; (b) S. J. Silvers and A. Tulinsky, J. Am. Chem. Soc., 1967, 89, 3331 CrossRef CAS.
  33. The AM1-minimization procedure converts the initial tetragonal and triclinic H2TPP into a geometry which strongly resembles the tetragonal structure. In contrast, with PM3 optimization converts both structures into a geometry in which the porphyrin ring is planar and the phenyl groups are almost perpendicular to the macrocycle (almost D2h symmetry). These findings will be discussed in a future comparative paper on semiempirical and DFT calculations of H2TPP: F. J. Vergeldt, T. J. Schaafsma, D. P. Piet, E. J. R. Sudhölter and H. Zuilhof, manuscript in preparation.
  34. K.–T. Lu, G. C. Eiden and J. C. Weisshaar, J. Phys. Chem., 1992, 96, 9742 CrossRef CAS.
  35. P. Cocolios and K. M. Kadish, Israel J. Chem., 1985, 25, 138 Search PubMed.
  36. K. Takahashi, T. Komura and H. Imanaga, Bull. Chem. Soc. Jpn., 1989, 62, 386 CAS.
  37. C. H. Langford, S. Seto and B. R. Hollebone, Inorg. Chim. Acta, 1984, 90, 221 CrossRef CAS.
  38. M. P. Byrn, C. J. Curtis, Y. Hsiou, S. I. Khan, P. A. Sawin, S. K. Tendick, A. Terzis and C. E. Strouse, J. Am. Chem. Soc., 1993, 115, 9480 CrossRef CAS.
  39. (a) J. F. van der Pol, E. Neeleman, J. W. Zwikker, R. J. M. Nolte and W. Drenth, Liq. Cryst., 1989, 6, 577 CAS; (b) P. G. Schouten, J. F. van der Pol, J. W. Zwikker, W. Drenth and S. J. Picken, Mol. Cryst. Liq. Cryst., 1991, 195, 291 CAS; (c) M. K. Engel, P. Bassoul, L. Bosio, H. Lehmann, M. Hanack and J. Simon, Liq. Cryst., 1993, 15, 709 CAS.
  40. (a) N. Boden, R. J. Bushby and J. Clements, J. Phys. Chem., 1993, 98, 5920 CrossRef CAS; (b) H. Ringsdorf and D. Haarer, Nature, 1994, 371, 141 CrossRef CAS; (c) P. Haish, G. Winter, W. Hanack, L. Lüer, H.-J. Egelhaaf and D. Oelkrug, Adv. Mater., 1997, 9, 316 CrossRef CAS.
  41. (a) A. Ghosh, P. G. Gassman and J. Almlöf, J. Am. Chem. Soc., 1994, 116, 1932 CrossRef CAS; (b) D. Lamoen and M. Parrinello, Chem. Phys. Lett., 1996, 248, 309 CrossRef CAS; (c) K. Toyota, J. Hasegawa and H. Nakatsuji, Chem. Phys. Lett., 1996, 250, 437 CrossRef CAS.
  42. J. Berkowitz, J. Chem. Phys., 1979, 70, 2819 CrossRef CAS.
  43. G. Schnurpfeil, A. K. Sobbi, W. Spiller, H. Kliesch and D. Wöhrle, J. Porphyrins Phthalocyanines, 1997, 1, 159 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.