Efficient formation of H-addition radical and secondary alkyl radical in pentylthymines γ-irradiated at 77 K

(Note: The full text of this document is currently only available in the PDF Version )

Nobuaki Ohta, Noriyuki Tanaka and Sotaro Ito


Abstract

EPR detection of three pentylthymines γ-irradiated at 77 K showed the production of a 5,6-dihydro-5-thymyl radical (5-thymyl radical) as an H-addition radical and a secondary alkyl radical formed by C–H bond fission at the second carbon from the end of the pentyl group. The introduction of the pentyl group into thymine increased total radical yields at 77 K up to about twice that of thymine and considerably enhanced 5-thymyl radical yields. Several discussions on the radical formation suggest that the efficient production of 5-thymyl radical is related to the concomitant formation of the secondary radical.


References

  1. For reviews see: (a) J. N. Herak, in Physico-chemical Properties of Nucleic Acids, ed. J. Duchesne, Academic Press, London, 1973, p. 197 Search PubMed; (b) W. A. Bernhard, Adv. Radiat. Biol., 1981, 9, 199 Search PubMed; (c) J. Hüttermann, in Radical Ionic Systems, ed. A. Lund and M. Shiotani, Kluwer Academic Publ., Dordrecht, 1991, p. 435 Search PubMed; (d) W. Flossmann, H. Zehner and A. Müller, Z. Naturforsch., 1980, 35c, 20 Search PubMed.
  2. B. Pruden, W. Snipes and W. Gordy, Proc. Natl. Acad. Sci., 1965, 53, 917 CAS.
  3. J. Hüttermann, Int. J. Radiat. Biol., 1970, 17, 249 CAS.
  4. T. Henriksen and W. Snipes, J. Chem. Phys., 1970, 52, 1997 CAS.
  5. A. Dulčić and J. N. Herak, J. Chem. Phys., 1972, 57, 2537 CrossRef CAS.
  6. H. C. Box and E. E. Budzinski, J. Chem. Phys., 1975, 62, 197 CrossRef CAS.
  7. E. Sagstuen, E. O. Hole, W. H. Nelson and D. M. Close, J. Phys. Chem., 1989, 93, 5974 CrossRef CAS.
  8. M. Iwasaki, K. Toriyama, M. Fukaya, H. Muto and K. Nunome, J. Phys. Chem., 1985, 89, 5278 CrossRef CAS.
  9. D. J. Henderson and J. E. Willard, J. Am. Chem. Soc., 1969, 91, 3014 CrossRef CAS; T. Ichikawa and N. Ohta, J. Phys. Chem., 1977, 81, 560 CrossRef CAS.
  10. T. Ichikawa and N. Ohta, Radiat. Phys. Chem., 1987, 29, 429 CrossRef CAS.
  11. For examples see: Y. Inaki, N. Matsumura, K. Kanbara and K. Takemoto, in Polymers for Microelectronics—Science and Technology, ed. Y. Tabata, I. Mita, S. Nonogaki, K. Horie and S. Tagawa, Kondansha-VCH, Tokyo, 1990, p. 91 Search PubMed; Y. Inaki, N. Matsumura and K. Takemoto, ACS Symp. Ser., 1994, 537, 142 Search PubMed.
  12. Color centers produced in quartz sample tubes gave intense signals in narrow regions of the observed spectra and hence the presence of the signals from color centers could not cause serious errors in the identification of produced radicals. The contributions of the color centers in the radical yields of pentylthymines at 77 K were estimated to be about 2% and those of MT and thymine at 77 K were about 4%. These contributions would not affect greatly the estimation of the radical yields.
  13. P. B. Ayscough and C. Thomson, Trans. Faraday Soc., 1962, 58, 1477 RSC.
  14. T. Henriksen, Radiat. Res., 1969, 40, 11 CAS.
  15. J. Schmidt, J. Chem. Phys., 1975, 62, 370 CrossRef CAS.
  16. W. Snipes and J. Schmidt, J. Chem. Phys., 1968, 49, 1443 CAS.
  17. W. Bernhard and W. Snipes, J. Chem. Phys., 1967, 46, 2848 CAS.
  18. M. D. Sevilla, J. Phys. Chem., 1971, 75, 626 CrossRef CAS.
  19. R. Bergene and T. B. Melø, Int. J. Radiat. Biol., 1973, 23, 263 CAS.
  20. W. Flossmann, J. Hüttermann, A. Müller and E. Westhof, Z. Naturforsch., Teil C, 1973, 28, 523 Search PubMed; W. Flossmann, A. Müller and E. Westhof, Mol. Phys., 1975, 29, 703 CAS.
  21. A. Dulčić and J. N. Herak, Mol. Phys., 1973, 26, 605 CAS.
  22. J. S. Nowick, J. S. Chen and G. Noronha, J. Am. Chem. Soc., 1993, 115, 7636 CrossRef CAS.
  23. R. Lefebvre and J. Maruani, J. Chem. Phys., 1965, 42, 1480 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.