Kinetics of the reduction of pinacolone by borane–dimethyl sulfide and catecholborane in THF

(Note: The full text of this document is currently only available in the PDF Version )

Conrad Eckhardt, Holger Jockel and Reinhard Schmidt


Abstract

The kinetics of the reduction of the ketone, pinacolone by borane–dimethyl sulfide and catecholborane have been investigated in tetrahydrofuran. Both overall reactions are composed of several subsequent and in part competing reactions. The use of commercial borane–dimethyl sulfide results in fast reactions and the borane reaction order of 1.6. In contrast, purified borane–dimethyl sulfide reacts distinctly slower and yields very different kinetics. The main reaction, the reduction of the ketone by the borane–dimethyl sulfide complex forming the monoalkoxyborane, is first order in both reactants similar to the reduction of pinacolone by the borane–tetrahydrofuran complex. The overall reaction with catecholborane proceeds much slower and appears to be much more complex. The reaction order is two in catecholborane and zero in ketone. Obviously, the reactive intermediates are derived from dimeric species of catecholborane. The kinetics of both different types of reaction can successfully be simulated by numerical integration. The results obtained from the evaluation of the kinetics are complemented by semi-empirical calculations in order to characterize the possible intermediates.


References

  1. S. Itsuno, K. Ito, A. Hirao and S. J. Nakahame, J. Chem. Soc., Chem. Commun., 1983, 469 RSC.
  2. E. J. Corey, R. K. Bakshi and S. J. Shibata, J. Am. Chem. Soc., 1987, 109, 5551 CrossRef CAS.
  3. L. Deloux and M. Srebnik, Chem. Rev., 1993, 93, 763 CrossRef CAS.
  4. S. Wallbaum and J. Martens, Tetrahedron: Asymmetry, 1992, 3, 1475 CrossRef CAS.
  5. A. Togni and L. M. Venanzi, Angew. Chem., Int. Ed. Engl., 1994, 33, 497 CrossRef.
  6. E. J. Corey and C. J. Helal, Angew. Chem., 1998, 110, 2092 CrossRef.
  7. H. Jockel and R. Schmidt, J. Chem. Soc., Perkin Trans. 2, 1997, 2719 RSC.
  8. R. Schmidt, H. Jockel, H.-G. Schmalz and H. Jope, J. Chem. Soc., Perkin Trans. 2, 1997, 2725 RSC.
  9. D. J. Mathre, A. S. Thompson, A. W. Douglas, K. Hoogsteen, J. D. Carroll, E. G. Corley and J. J. Grabowski, J. Org. Chem., 1993, 58, 2880 CrossRef CAS.
  10. M. Masui and T. Shioiri, Synlett, 1997, 273 CAS.
  11. P. Pinho, D. Guijarro and P. G. Andersson, Tetrahedron, 1998, 54, 7897 CrossRef CAS.
  12. E. J. Corey, J. O. Link and R. K. Bakshi, Tetrahedron Lett., 1992, 33, 7107 CrossRef CAS.
  13. E. J. Corey and C. J. Helal, Tetrahedron Lett., 1993, 34, 5227 CrossRef CAS.
  14. B. T. Cho and M. H. Ryu, Bull. Korean Chem. Soc., 1994, 15, 1027 CAS.
  15. T. Fujisawa, Y. Onogawa and M. Shimizu, Tetrahedron Lett., 1998, 39, 6019 CrossRef CAS.
  16. H. C. Brown and B. C. S. Rao, J. Am. Chem. Soc., 1960, 82, 681 CrossRef CAS.
  17. J. D. Pasto and B. Lepeska, J. Am. Chem. Soc., 1976, 98, 1091 CrossRef.
  18. H. C. Brown, Hydroboration, W. A. Benjamin Inc., New York, 1962, p. 18 Search PubMed.
  19. J. D. Pasto, V. Balasubramaniyan and P. W. Wojitkowski, Inorg. Chem., 1969, 8, 594 CrossRef.
  20. HyperChem software package release 4.5, 1995, Hypercube, Inc., Waterloo, Ontario.
  21. Gmelin Handbuch der Anorganischen Chemie, vol. 48 (Borverbindungen Teil 16), p. 8, Springer Verlag, Berlin, Heidelberg, New York, 1977.
  22. Personal communication by Chemetall GmbH, Frankfurt/M., Germany.
  23. C. S. Shiner, J. Am. Chem. Soc., 1985, 107, 7167 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.