Investigation of solute–solvent interactions in a dithiophosphoroorganic carbohydrate derivative by means of X-ray analysis and solid state NMR

(Note: The full text of this document is currently only available in the PDF Version )

Marek J. Potrzebowski, Katarzyna Ganicz, Włodzimierz Ciesielski, Aleksandra Skowrońska, Michał W. Wieczorek, Jarosław Błaszczyk and Wiesław Majzner


Abstract

Bis[6-O,6′-O-(1,2∶3,4-diisopropylidene-α-D-galactopyranosyl)thiophosphoryl] disulfide 1 (C48H76O24P2S4) crystallized from polar and/or nonpolar solvents forms different inclusion complexes and solvates. The X-ray data for complexes of 1 with propan-2-ol (1a) and acetone (1b) are reported. From DSC measurements it is apparent that with loss of the solvent, crystals undergo complex rearrangements below the melting point forming the 1c modification. Each form is characterized by 31P CP/MAS experiment. The analysis of the 31P δii principal elements of the chemical shift tensor suggests that distinction of δ33 for different modifications is related to O–H[hair space][hair space]· · ·[hair space][hair space]S[double bond, length half m-dash]P and C–H[hair space][hair space]· · ·[hair space][hair space]S[double bond, length half m-dash]P intermolecular contacts. 2H NMR spectroscopy is employed to investigate the mechanism of phase reorientation and molecular dynamics of methyls of the isopropylidene blocking groups. At ambient temperature, the C3v jump of the methyl group and additional small-amplitude motion of the five membered ring is deduced from line-shape analysis of a 2H QUADECHO experiment. During the change of sample composition at 370 K, fast molecular motion of the methyl groups is observed while the S[double bond, length half m-dash]P–S–S–P[double bond, length half m-dash]S backbone remains rigid. From variable temperature 2H T1 inversion–recovery measurements it is concluded that the Ea of the C3v jump strongly depends on molecular packing.


References

  1. J. M. Lehn, in Supramolecular Chemistry, Concepts and Perspectives, VCH, Weinheim, New York, Basel, Cambridge, Tokyo, 1995 Search PubMed.
  2. F. Vögtle, in Supramolecular Chemistry, John Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore, 1991 Search PubMed.
  3. G. A. Jerey and W. Saenger, in Hydrogen Bonding in Biological Structures, Springer-Verlag, Berlin, Heidelberg, New York, 1991 Search PubMed.
  4. (a) G. R. Desiraju, Acc. Chem. Res., 1991, 24, 290 CrossRef CAS; (b) G. R. Desiraju, Acc. Chem. Res., 1996, 29, 441 CrossRef CAS; (c) G. R. Desiraju, Angew. Chem., Int. Ed. Engl., 1995, 34, 2311 CrossRef CAS; (d) M. Zaworotko, Chem. Soc. Rev., 1994, 23, 283 RSC.
  5. M. J. Potrzebowski, M. Michalska, A. E. Kozioł, S. Kaźmierski, T. Lis, J. Pluskowski and W. Ciesielski, J. Org. Chem., 1998, 63, 4209 CrossRef CAS.
  6. D. Braga, F. Grepioni, K. Biradha, V. R. Pedireddi and G. R. Desiraju, J. Am. Chem. Soc., 1995, 117, 3156 CrossRef CAS.
  7. M. T. Carroll and R. F. Bader, Mol. Phys., 1988, 65, 695 CAS.
  8. M. J. Potrzebowski, J. Błaszczyk and M. W. Wieczorek, J. Org. Chem., 1995, 60, 2549 CrossRef CAS.
  9. WIN-MAS program, version 940108, Bruker-Franzen Analytik GMBH, Bremen, 1994.
  10. (a) J. Herzfeld and A. Berger, J. Chem. Phys., 1980, 73, 6021 CrossRef CAS; (b) G. Jeschke and G. Grossmann, J. Magn. Reson., 1993, A103, 323.
  11. (a) R. G. Grinffin, Methods Enzymol., 1981, 72, 108 CAS; (b) L. W. Jelinski, in High Resolution NMR Spectroscopy of Synthetic Polymers in Bulk, Ed. R. A Komoroski, VCH Publishers, 1986, chap. 10, pp. 335–364 Search PubMed.
  12. G. L. Hoatson and R. L. Vold, in NMR Basic Principles and Progress, Ed. P. Diehl, E. Fluck, H. Günther, R. Kosfeld and J. Seelig, Springer-Verlag, 1994, Vol. 32, pp. 1–69 Search PubMed.
  13. (a) D. A. Torchia and A. Szabo, J. Magn. Reson., 1982, 49, 107 CAS; (b) D. A. Torchia and A. Szabo, J. Magn. Reson., 1985, 64, 135 CAS.
  14. P. Dais and A. Perlin, Can. J. Chem., 1983, 61, 1542 CAS.
  15. P. Dais, in NMR of Biological Macromolecules, NATO ASI Series, Ed. C. I. Stassinopoulou, Springer-Verlag Berlin, Heidelberg, 1994, Vol. H. 87, pp. 263–278 Search PubMed.
  16. K. Beshah, E. T. Olejniczak and R. G. Griffin, J. Chem. Phys., 1987, 86, 4730 CrossRef CAS.
  17. (a) L. Bachedlar, C. H. Niu and D. A. Torchia, J. Am. Chem. Soc., 1983, 105, 2228 CrossRef; (b) S. W. Sparks, N. Budhu, P. E. Young and D. A. Torchia, J. Am. Chem. Soc., 1988, 110, 3359 CrossRef CAS; (c) A. Kintanar, T. M. Alam, W. C. Huang, D. C. Schindale, D. E. Wemmer and G. Drobny, J. Am. Chem. Soc., 1988, 110, 6367 CrossRef CAS.
  18. J. Mason, Solid State Nucl. Magn. Reson., 1993, 2, 285 CrossRef CAS.
  19. J. H. Davies, K. R. Bloom, M. I. Valic and I. P. Higgs, Chem. Phys. Lett., 1976, 42, 390 CrossRef CAS.
  20. M. S. Greenfield, A. D. Ronemus, R. L. Vold, R. R. Vold, P. D. Ellis and T. E. Raidy, J. Magn. Reson., 1987, 70, 89.
  21. A. Abragam, Principles of Nuclear Magnetism, Oxford University Press, Stuttgart, 1961 Search PubMed.
  22. J. D. Schagen, L. Straver, F. Van Meurs and G. Williams, CAD4 Manual. Version 5.0, Enraf-Nonius, Delft, The Netherlands, 1989 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.