Reactions of 4-bis(2-chloroethyl)aminophenylacetic acid (phenylacetic acid mustard) in physiological solutions

(Note: The full text of this document is currently only available in the PDF Version )

Toni Pettersson-Fernholm, Juhani Vilpo, Markus Kosonen, Kristo Hakala and Jari Hovinen


Abstract

4-Bis(2-chloroethyl)aminophenylacetic acid (phenylacetic acid mustard, 2) is the major metabolite of the cancer chemotherapeutic agent chlorambucil (1). Although its high antitumor activity and high toxicity to normal tissues have been known for a long time, no detailed chemical data on its reactions in aqueous media have been available. According to the present results 2 is decomposed in aqueous solutions by the same mechanism as other aromatic and aliphatic nitrogen mustards: an intramolecular, rate determining attack of the unprotonated nitrogen to form an aziridinium ion intermediate is followed by attack of an external nucleophile. Species 2 is considerably more stable in whole plasma than in plasma ultrafiltrate (t1/2 at 37 °C 10 h and 37 min, respectively). Also the product distribution is completely different: while in protein-depleted plasma the only reaction is hydrolysis, in plasma the predominant reactions are non-covalent and covalent binding of 2 to albumin. The present information is important when clinical evaluation of chlorambucil, or in vitro evaluation of phenylacetic acid mustard, is performed in order to determine efficacy and bioavailability of these compounds.


References

  1. C. B. Faguet, J. Clin. Oncol., 1994, 12, 974 Search PubMed.
  2. W. B. Pratt, R. W. Ruddon, W. D. Ensminger and J. Maybaum, The Anticancer Drugs, 2nd edn., Oxford University Press, New York, 1994, ch. 6 Search PubMed.
  3. A. McLean, A. D. Newell, G. Baker and T. Connors, Biochem. Pharmacol., 1980, 29, 2039 CrossRef CAS.
  4. N. H. Greig, E. M. Daly, D. J. Sweeney and S. I. Rapaport, Cancer Chemother. Pharmacol., 1990, 25, 320 Search PubMed.
  5. M. M. Oppitz, E. Musch, H. P. Malek, H. Rüb, G. E. von Unruh, U. Loos and B. Mühlenbruch, Cancer Chemother. Pharmacol., 1989, 23, 208 Search PubMed.
  6. L. Bastholt, C.-J. Johansson and P. A. Pfeiffer, Cancer Chemother. Pharmacol., 1991, 28, 205 Search PubMed.
  7. W. R. Owen and P. J. Stewart, J. Pharm. Sci., 1979, 68, 992 CAS.
  8. D. C. Chatterji, R. L. Yager and J. F. Gallelli, J. Pharm. Sci., 1982, 71, 50 CAS.
  9. G. C. Kundu, J. R. Schullek and I. R. Wilson, Pharmacol. Biochem. Behav., 1994, 49, 621 CrossRef CAS.
  10. P. M. Cullis, R. E. Green and M. E. Malone, J. Chem. Soc., Perkin Trans. 2, 1995, 1503 RSC.
  11. J. Hovinen, T. Pettersson-Fernholm, M. Lahti and J. Vilpo, Chem. Res. Toxicol., 1998, 11, 1377 CrossRef CAS.
  12. D. M. Dulik, O. M. Colvin and C. Fenselau, Biomed. Environ. Mass Spectrom., 1990, 19, 248 CAS.
  13. J. Hovinen, R. Silvennoinen and J. Vilpo, Chem. Res. Toxicol., 1998, 11, 91 CrossRef CAS.
  14. Goodman & Gilman's The Pharmacological Basis of Therapeutics, 9th edn., ed. J. G. Hardman and L. E. Limbird, McGraw-Hill, New York, 1995 Search PubMed.
  15. T. Peters, Jr., All About Albumin, Academic Press, San Diego, 1996 Search PubMed.
  16. K. Löf, J. Hovinen, P. Reinikainen, L. M. Vilpo, E. Seppälä and J. A. Vilpo, Chem.-Biol. Interact., 1997, 103, 187 Search PubMed.
  17. A. R. Green and J. K. Guillory, J. Pharm. Sci., 1989, 78, 427 CAS.
  18. M. J. Lind and C. Ardiet, Cancer Surv., 1993, 17, 157 Search PubMed.
  19. J. Hovinen, Acta Chem. Scand., 1996, 50, 1174 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.