Ab Initio calculations of the potential surfaces for rearrangement of methylenecyclopropane and 2,2-difluoromethylenecyclopropane. Why do the geminal fluorines have little effect on lowering the activation energy?[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Scott B. Lewis, David A. Hrovat, Stephen J. Getty and Weston Thatcher Borden


Abstract

(4/4)CASSCF and CASPT2 calculations with the 6-31G* basis set have been performed in order to understand the experimental observation that the geminal fluorines in 2,2-difluoromethylenecyclopropane (2) have only a small effect on lowering the activation energies for its degenerate and non-degenerate methylenecyclopropane rearrangements, relative to the activation energy for the rearrangement of the hydrocarbon (1). As expected from previous experimental and computational studies, the geminal fluorines are calculated to destabilize the three-membered ring in 2 thermodynamically. The small amount of kinetic destabilization of 2 is shown to be due to a nearly equal destabilization of the transition structures for its rearrangements. The high energies of the transition structures are attributed to the strong preference of a CF2 group for a pyramidal geometry. This preference is found to destabilize the transition structures both for forming a σ bond to the fluorinated carbon in the degenerate methylenecyclopropane rearrangement of 2 and for making a π bond to this carbon in the non-degenerate rearrangement of 2 to (difluoromethylene)cyclopropane (4).


References

  1. Reviews: (a) W. R. Dolbier, Jr., Acc. Chem. Res., 1981, 14, 195 CrossRef; (b) B. E. Smart, in Molecular Structure and Energetics, eds. J. F. Liebman and A. Greenberg, VCH, Deerfield Beach, FL, 1986; vol. 3, 141 Search PubMed.
  2. W. R. Roth, W. Kirmse, W. Hoffmann and H. W. Lennartz, Chem. Ber., 1982, 115, 2508 CAS.
  3. A. Greenberg, J. Liebman, W. R. Dolbier Jr., K. S. Medinger and A. Skancke, Tetrahedron, 1983, 39, 1533 CrossRef CAS.
  4. (a) S. J. Getty, D. A. Hrovat, J. D. Xu, S. A. Barker and W. T. Borden, J. Chem. Soc., Faraday Trans., 1994, 90, 1689 RSC; (b) 2,2-difluoropropane was computed to be 5.9 kcal mol–1 more stable than 1,1-difluoropropane at the RHF/6-31G* level and 7.3 kcal mol–1 more stable at the MP2/6-31G* level. Thus, the strain released upon formation of the latter from 1,1-difluorocyclopropane was calculated to exceed that released by formation of propane from cyclopropane by 6.6 kcal mol–1 at the RHF level and 6.3 kcal mol–1 at MP2.
  5. (a) W. R. Dolbier, Jr. and H. O. Enoch, J. Am. Chem. Soc., 1977, 99, 4532 CrossRef; (b) However, as predicted by ab initio calculations,4,6 the Ea for racemization of optically active cis-1,1-difluoro-2-ethyl-3-methyl-cyclopropane by coupled conrotation has subsequently been found to be 8.4 kcal mol–1 lower than the Ea for conversion of the cis-2,3-dimethyl fluorocarbon to the trans isomer.7.
  6. S. J. Getty, D. A. Hrovat and W. T. Borden, J. Am. Chem. Soc., 1994, 116, 1521 CrossRef CAS.
  7. F. Tian, S. B. Lewis, M. D. Bartberger, W. R. Dolbier Jr. and W. T. Borden, J. Am. Chem. Soc., 1998, 120, 6187 CrossRef CAS.
  8. W. R. Dolbier, Jr. and S. F. Sellers, J. Am. Chem. Soc., 1982, 104, 2494 CrossRef.
  9. W. R. Dolbier, Jr. and T. H. Fielder, Jr., J. Am. Chem. Soc., 1978, 100, 5577 CrossRef.
  10. W. R. Dolbier, Jr., C. R. Burkholder, A. L. Chaves and A. Green, J. Fluorine Chem., 1996, 77, 31 CrossRef.
  11. (a) S. J. Getty, E. R. Davidson and W. T. Borden, J. Am. Chem. Soc., 1992, 114, 2085 CrossRef CAS; (b) J. E. Baldwin, Y. Yamaguchi and H. F. Schaefer III, J. Phys. Chem., 1994, 98, 7513 CrossRef CAS.
  12. P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 1973, 28, 213 CrossRef CAS.
  13. Gaussian 94, Revision B.3, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1995.
  14. Review: W. T. Borden and E. R. Davidson, Acc. Chem. Res., 1996, 29, 87 Search PubMed.
  15. K. Andersson, P.-Å. Malmqvist and B. O. Roos, J. Chem. Phys., 1992, 96, 1218 CrossRef CAS.
  16. MOLCAS version 3, K. Andersson, M. R. A. Blomberg, M. P. Fülscher, V. Kellö, R. Lindh, P.-Å. Malmqvist, J. Noga, J. Olsen, B. O. Roos, A. J. Sadlej, P. E. M. Siegbahn, M. Urban and P.-O. Widmark, University of Lund, Sweden, 1994.
  17. D. Feller, K. Tanaka, E. R. Davidson and W. T. Borden, J. Am. Chem. Soc., 1982, 104, 967 CrossRef CAS.
  18. Review: W. T. Borden, Chem. Commun., 1998, 1919 Search PubMed.
  19. (a) W. T. Borden and L. Salem, J. Am. Chem. Soc., 1973, 95, 932 CrossRef CAS; (b) W. T. Borden, J. Am. Chem. Soc., 1975, 97, 2906 CrossRef CAS; (c) E. R. Davidson and W. T. Borden, J. Am. Chem. Soc., 1977, 99, 2053 CrossRef CAS.
  20. (a) W. von E. Doering and H. D. Roth, Tetrahedron, 1970, 26, 2825 CrossRef; (b) J. C. Gilbert and J. R. Butler, J. Am. Chem. Soc., 1970, 92, 2168 CrossRef CAS; (c) M. Jones, Jr., M. E. Hendrick, J. C. Gilbert and J. R. Butler, Tetrahedron Lett., 1970, 845 CrossRef; (d) W. von E. Doering and L. Birladeanu, Tetrahedron, 1973, 29, 449 CrossRef.
  21. (a) In contrast to the (4/4)CASSCF results, (2/2)CASSCF calculations find that the disrotatory stationary point is a true transition structure, connecting 1 and 9; B. Ma and H. F. Schaefer III, Chem. Phys., 1996, 207, 31 Search PubMed; (b) for the results of other recent calculations on trimethylenemethane see C. J. Cramer and B. A. Smith, J. Phys. Chem., 1996, 100, 9664 Search PubMed.
  22. J. P. Chesick, J. Am. Chem. Soc., 1963, 85, 2720 CrossRef CAS.
  23. Replacement of the remaining pair of ring hydrogens in 2 by fluorines has been computed to result in a 10 kcal mol–1 larger increase in strain than replacing a pair of geminal ring hydrogens in 1 by fluorines; A. Skancke and U. Wahlgren, Acta Chem. Scand. A, 1983, 37, 771 Search PubMed It is generally the case in fluorocarbons that substitution of fluorine for hydrogen at carbons adjacent to CF2 groups is destabilizing,1 and this is probably the reason why the Ea for methylenecyclopropane rearrangement is 9 kcal mol–1 smaller in 1,1,2,2-tetrafluoromethylenecyclopropane than in 2; W. R. Dolbier, Jr., S. F. Sellers, B. H. Al-Sader and B. E. Smart, J. Am. Chem. Soc., 1980, 102, 5398.
  24. (a) S. Y. Wang and W. T. Borden, J. Am. Chem. Soc., 1989, 111, 7282 CrossRef CAS; (b) H. Hammons, M. B. Coolidge and W. T. Borden, J. Phys. Chem., 1990, 94, 5468 CrossRef CAS; (c) A. Nicolaides and W. T. Borden, J. Am. Chem. Soc., 1992, 114, 8682 CrossRef CAS.
  25. (a) The calculated CISD difference of 5.7 kcal mol–1 between the energy required to twist a CH2 group out of conjugation in allyl radical and the CF2 group out of conjugation in 1,1-difluoroallyl radical24b,c is, in fact, similar to the CASPT2 differences of 7.7 and 6.7 kcal mol–1 between the energies of, respectively, 10 and 12 and 11 and 12; (b) the CISD energy of 12.7 kcal mol–1 that is required to planarize the twisted CF2 group in 1,1-difluoroallyl radical is also similar to the CASPT2 energy of 11.0 kcal mol–1 required to planarize the CF2 group in 12.
  26. The pyramidalization angle, φ, is the angle between the plane of the CF2 group and the extension of the C–C bond to it.
  27. See, for example: (a) D. A. Hrovat, H. Sun and W. T. Borden, THEOCHEM, 1988, 163, 51 CrossRef; (b) W. T. G. Johnson and W. T. Borden, J. Am. Chem. Soc., 1997, 119, 5930 CrossRef CAS; (c) P. N. Skancke, D. A. Hrovat and W. T. Borden, J. Phys. Chem. A, 1999, 103, 4043 CrossRef CAS.
  28. (a) H.-G. Korth, H. Trill and R. Sustmann, J. Am. Chem. Soc., 1981, 103, 4483 CrossRef; (b) D. A. Hrovat and W. T. Borden, J. Phys. Chem., 1994, 98, 10460 CrossRef CAS and references cited therein.
  29. W. J. Hehre, J. A. Pople and A. J. P. Devaquet, J. Am. Chem. Soc., 1976, 98, 664 CrossRef CAS.
  30. The transition structure for methylene rotation in 1,1-difluoropropane-1,3-diyl has the CH2 group rotated 90° from its conformation in 23. In the transition structure there is, therefore, no interaction between the CH2 and CF2 radical centers; and its (2/2)CASSCF energy is, consequently, 7.7 kcal mol–1 higher than that of 23.6.
Click here to see how this site uses Cookies. View our privacy policy here.