Density functional theory (DFT) study on the interaction of ammonium (NH4+) and aromatic nitrogen heterocyclics

(Note: The full text of this document is currently only available in the PDF Version )

Wei-Liang Zhu, Hua-Liang Jiang, Chum Mok Puah, Xiao-Jian Tan, Kai-Xian Chen, Yang Cao and Ru-Yun Ji


Abstract

A DFT calculation was performed at the B3LYP/6-31G* level on the complexes formed by NH4+ and aromatic nitrogen heterocyclics, viz. pyrrole, imidazole, pyridine and indole, in order to investigate the mechanism and complexity of the interaction between the ammonium group and the aromatic heterocyclic in biomacromolecules. The optimized geometries suggested that there are two different types of complexes: one is a cation–π complex and the other is a hydrogen bond complex. A cation–π complex will be formed if the heteroatom has no localized lone-pair electrons. A hydrogen bond complex will be formed by proton transfer from NH4+ to the heteroatom if the heteroatom has localized lone-pair electrons. In the case of the cation–π complex, the predicted geometries, atomic charges and thermodynamic parameters revealed that ammonium binds more strongly to heterocyclics than it binds to benzene. The calculated orbital coefficient and the optimized structures implied that NH4+ interacts with the π electrons of the C[double bond, length half m-dash]C bond of heterocyclics to form a cation–π complex mainly through one hydrogen atom. Regarding the hydrogen bond complex, although the calculated binding strength is similar to that for the cation–π complex, the ΔH of the whole reaction process suggested that the formation of the hydrogen bond complex is favorable to the stability of the whole system. Calculated IR spectra showed that three groups of new bands appear when NH4+ binds to heterocyclics. Normal mode analysis showed that these new bands are all related to the relative motion of the two parts in the formed complexes. All these results suggest that the NH4+–heterocyclic system is a better model for studying the nature and complexity of the interaction between the ammonium group and the aromatic ring structure in biomolecules.


References

  1. J. C. Ma and D. A. Dougherty, Chem. Rev., 1997, 97(5), 1303 CrossRef CAS.
  2. C. A. Deakyne and M. Meot-Ner, J. Am. Chem. Soc., 1985, 107, 474 CrossRef CAS.
  3. H. Basch and W. J. Stevens, J. Mol. Struct. (THEOCHEM), 1995, 338, 303 CrossRef CAS.
  4. S. K. Burley and G. A. Petsko, FEBS Lett., 1986, 203, 139 CrossRef CAS.
  5. O. Mó, M. Yáñez and J. Elguero, J. Org. Chem., 1987, 52, 1713 CrossRef CAS.
  6. M. A. Petti, T. J. Shepodd, J. R. E. Barrans and D. A. Dougherty, J. Am. Chem. Soc., 1988, 110, 6825 CrossRef CAS.
  7. P. Mátyus, K. Fuji and K. Tanaka, Tetrahedron, 1994, 50(8), 1405.
  8. W. L. Zhu, H. L. Jiang, J. Z. Chen, J. D. Gu, K. X. Chen, Y. Cao and R. Y. Ji, Sci. China Ser. B: Chem., 1998, 41(6), 616 Search PubMed.
  9. X. J. Tan, H. L. Jiang, W. L. Zhu, K. X. Chen and R. Y. Ji, J. Chem. Soc., Perkin Trans. 2, 1999, 107 RSC.
  10. H. L. Jiang, W. L. Zhu, X. J. Tan, J. D. Gu, J. Z. Chen, M. W. Lin, K. X. Chen and R. Y. Ji, Sci. China Ser. B: Chem., 1998, 41(5), 535 Search PubMed.
  11. K. Murayama and K. Aoki, Chem Commun., 1997, 119 RSC.
  12. Y. J. Zhang and K. M. Merz, Jr., J. Comput. Chem., 1992, 13(9), 1151 CrossRef CAS.
  13. S. Mecozzi, A. P. West, Jr and D. A. Dougherty, J. Am. Chem. Soc., 1996, 118, 2307 CrossRef CAS.
  14. J. W. Caldwell and P. A. Kollman, J. Am. Chem. Soc., 1995, 117, 4177 CrossRef CAS.
  15. J. Y. Lee, S. J. Lee, H. S. Choi, K. S. Kim and T. K. Ha, Chem. Phys. Lett., 1995, 232, 67 CrossRef CAS.
  16. D. Becke, J. Chem. Phys., 1993, 98, 5648 CrossRef CAS.
  17. S. Mecozzi, A. P. West, Jr. and D. A. Dougherty, Proc. Natl. Acad. Sci., 1996, 93, 10566 CrossRef CAS.
  18. J. D. Gu, K. X. Chen, H. L. Jiang, W. L. Zhu, J. Z. Chen and R. Y. Ji, Chem. Phys. Lett., 1997, 277(1–3), 234 CrossRef CAS.
  19. W. L. Zhu, H. L. Jiang, J. D. Gu, J. Z. Chen, J. K. Shen, K. X. Chen and R. Y. Ji. J. Mol. Struct. (THEOCHEM), 1999, in the press Search PubMed.
  20. W. L. Zhu, H. L. Jiang, X. J. Tan, J. Z. Chen, Y. F. Zhai, J. D. Gu, M. W. Lin, K. X. Chen, R. Y. Ji and Y. Cao, Acta Chim. Sin., 1999, 57, 852 Search PubMed.
  21. H. L. Jiang, W. L. Zhu, X. J. Tan, J. Z. Chen, Y. F. Zhai, D. X. Liu, L. Zhao, K. X. Chen and R. Y. Ji, Acta Chim. Sin., 1999, 57, 860 Search PubMed.
  22. A. M. de Vos, M. Ultsch and A. A. Kossiakoff, Science, 1992, 255, 306 CAS.
  23. J. L. Sussman, M. Harel, F. Frolow, C. Oefner, A. Goldman, L. Toker and I. Silman, Science, 1991, 253, 872 CrossRef CAS.
  24. X. Cheng, S. Kumar, J. Posfai, J. W. Pflugrath and R. J. Roberts, Cell, 1993, 74, 299 CAS.
  25. GAUSSIAN94, Gaussian, Inc., Pittsburgh, PA, 1995 Search PubMed.
  26. SYBYL6.2, Tripoes Associates, St. Louis (MO), 1995 Search PubMed.
  27. D. A. Dougherty and D. A. Stauuffer, Science, 1990, 250, 1558 CrossRef CAS.
  28. C. M. Breneman and K. B. Wiberg, J. Comput. Chem., 1990, 11, 361 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.