Molecular interaction between cinchonidine and acetic acid studied by NMR, FTIR and ab initio methods

(Note: The full text of this document is currently only available in the PDF Version )

Davide Ferri, Thomas Bürgi and Alfons Baiker


Abstract

Cinchona alkaloids play a major role as chiral auxiliaries in asymmetric catalysis. Acetic acid is known to be an excellent solvent in the enantioselective hydrogenation over chirally modified platinum metals. The crucial interaction between the chiral auxiliary and the solvent has been investigated using the cinchonidine–acetic acid pair. Solutions containing cinchonidine and acetic acid were studied by means of NMR and IR spectroscopy as well as by ab initio Hartree–Fock calculations. In the presence of the acid cinchonidine is protonated at the quinuclidine N and adopts an open conformation where the quinuclidine N points away from the quinoline moiety. In the most stable 1∶1 and 2∶1 acetic acid–cinchonidine complexes both the N–H+ and O–H groups of cinchonidine are involved in hydrogen bonding. The most stable 1∶1 complex is found to be cyclic. The relative arrangement of the N–H+ and O–H groups of protonated cinchonidine is ideally suited to bind an acetate anion, and the interaction hardly affects the cinchonidine conformation. Several 2∶1 acid–base complexes coexist in solution. The IR spectra give evidence for the existence of a 2∶1 cyclic complex. Calculated structures, relative energies and vibrational frequencies are in good agreement with the experiment. The findings rationalise the importance of the O–H group of cinchonidine for the enantiodifferentiation in the enantioselective hydrogenation of α,β-unsaturated carboxylic acids over cinchonidine-modified Pd.


References

  1. R. A. Johnson and K. B. Sharpless, Catalytic Asymmetric Synthesis, VCH Publishers, Weinheim, 1993 Search PubMed; H. Wynberg, Topics in Stereochemistry, Wiley, New York, 1986, vol. 16 Search PubMed; R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley, New York, 1994 Search PubMed.
  2. O. Toussaint, P. Capdevielle and M. Maumy, Tetrahedron Lett., 1987, 28, 539 CrossRef CAS.
  3. A. Baiker and H. U. Blaser, Handbook of Heterogeneous Catalysis, Wiley-VCH, Weinheim, 1997, vol. 5, p. 2422 Search PubMed; P. B. Wells and A. G. Wilkinson, Top. Catal., 1998, 5, 39 Search PubMed; H. U. Blaser, H. P. Jalett, M. Müller and M. Studer, Catal. Today, 1997, 37, 441 CrossRef CAS.
  4. A. Baiker, J. Mol. Catal. A: Chem., 1997, 115, 473 CrossRef CAS.
  5. J. T. Wehrli, A. Baiker, D. M. Monti, H. U. Blaser and H. P. Jalett, J. Mol. Catal., 1989, 57, 245 CrossRef CAS.
  6. T. Bürgi and A. Baiker, J. Am. Chem. Soc., 1998, 120, 12920 CrossRef.
  7. O. Schwalm, J. Weber, J. Margitfalvi and A. Baiker, J. Mol. Struct., 1993, 297, 285 CrossRef CAS.
  8. K. Borszeky, T. Mallat and A. Baiker, Tetrahedron: Asymmetry, 1997, 8, 3745 CrossRef CAS.
  9. Y. Nitta and A. Shibata, Chem. Lett., 1998, 161 CrossRef CAS.
  10. P. Barczynski, Z. Dega-Szafran and M. Szafran, J. Chem. Soc., Perkin Trans. 2, 1987, 901 RSC.
  11. R. Krämer and G. Zundel, J. Chem. Soc., Faraday Trans., 1990, 86, 301 RSC; Z. Dega-Szafran, M. Grundwald-Wyspianska and M. Szafran, J. Chem. Soc., Faraday Trans., 1991, 87, 3825 RSC; Z. Dega-Szafran, M. Grundwald-Wyspianska and M. Szafran, Spectrochim. Acta, Part A, 1991, 47, 543 CrossRef.
  12. K. Borszeky, T. Mallat, R. Aeschimann, W. B. Schweizer and A. Baiker, J. Catal., 1996, 161, 451 CrossRef CAS.
  13. S. Larsen, H. Lopez de Diego and D. Kozma, Acta Crystallogr., Sect. B, 1993, 49, 310 CrossRef.
  14. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzweski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzales and J. A. Pople, GAUSSIAN94 (revision E.1); Gaussian, Inc., Pittsburgh PA, 1995.
  15. M. Schütz, T. Bürgi, S. Leutwyler and T. Fischer, J. Chem. Phys., 1993, 98, 3763 CrossRef.
  16. M. Schütz, T. Bürgi and S. Leutwyler, J. Mol. Struct., (THEOCHEM), 1993, 276, 117 CrossRef.
  17. M. Schürch, O. Schwalm, T. Mallat, J. Weber and A. Baiker, J. Catal., 1997, 169, 275 CrossRef CAS.
  18. B. Minder, T. Mallat, P. Skrabal and A. Baiker, Catal. Lett., 1994, 29, 115 CrossRef CAS.
  19. G. D. H. Dijkstra, R. M. Kellogg and H. Wynberg, J. Org. Chem., 1990, 55, 6121 CrossRef CAS.
  20. S. Bratoz, D. Hadzi and N. Sheppard, Spectrochim. Acta, 1956, 8, 249 CrossRef CAS; L. J. Bellamy, R. F. Lake and R. J. Pace, Spectrochim. Acta, 1963, 19, 443 CrossRef CAS.
  21. G. M. Barrow and E. A. Yerger, J. Am. Chem. Soc., 1954, 76, 5211 CrossRef CAS.
  22. L. J. Bellamy and R. J. Pace, Spectrochim. Acta, Part A, 1971, 27, 705 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.