Neutral vs. zwitterionic form of arginine—an ab initio study

(Note: The full text of this document is currently only available in the PDF Version )

Zvonimir B. Maksić and Borislav Kovačević


Abstract

The problem of the intramolecular proton transfer isomerism in arginine, leading to conventional neutral and zwitterionic forms of this compound, is addressed by high level theoretical models. It is shown that arginine has two neutral and two zwitterionic isomers implying that there exist two additional unconventional isomers, which have not been identified so far. It appears also that the most stable neutral isomer is energetically more favourable than both zwitterions, which implies that the former should be preferred in the gas phase. Examination of atomic charges obtained by the electron density partitioning techniques reveals that the charge distributions of neutral and zwitterionic isomers are not as widely different as expected. This finding is counterintuitive, since it contradicts the classical notion of chemical bonding and a customary picture of zwitterions involving two local complementary fragments possessing unit charges of opposite sign. The true distribution of the electron density is more uniform and quite similar to that of the neutral form. The proton affinity of arginine is estimated to be 249 kcal mol–1. Hence, it follows that arginine is a very basic compound although it belongs to a family of 20 fundamental α-amino acids. A very high proton affinity is interpreted in terms of the resonance effect spurred by protonation in the guanidine moiety and by a strong hydrogen bonding taking place in the protonated form.


References

  1. R. D. Suenram and F. J. Lovas, J. Mol. Spectrosc., 1978, 72, 372 CrossRef CAS.
  2. L. Schäfer, H. L. Selers, F. J. Lovas and R. D. Suenram, J. Am. Chem. Soc., 1980, 102, 6556 CrossRef.
  3. M. J. Locke and R. T. McIver, Jr., J. Am. Chem. Soc., 1983, 105, 4226 CrossRef CAS.
  4. J. H. Jensen and M. S. Gordon, J. Am. Chem. Soc., 1995, 117, 8159 CrossRef CAS.
  5. W. D. Price, R. A. Jockusch and E. R. Williams, J. Am. Chem. Soc., 1997, 119, 11988 CrossRef CAS.
  6. C. J. Chapo, J. P. Paul, R. A. Provencal, K. Roth and R. J. Saykally, J. Am. Chem. Soc., 1998, 120, 12956 CrossRef CAS.
  7. C. Hillebrand, M. Klessinger, M. Eckert-Maksić and Z. B. Maksić, J. Phys. Chem., 1996, 100, 9698 CrossRef CAS.
  8. B. Kovačević and Z. B. Maksić, Chem. Phys. Lett., 1998, 288, 289 CrossRef CAS; B. Kovačević, Z. B. Maksić and P. Rademacher, Chem. Phys. Lett., 1998, 293, 245 CrossRef CAS.
  9. Z. B. Maksić and B. Kovačević, J. Phys. Chem. A, 1998, 102, 7324 CrossRef CAS.
  10. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghvachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzales and J. A. Pople, GAUSSIAN 94, Revision D.1, Gaussian Inc. Pittsburg, PA, 1995.
  11. Z. B. Maksić, in Theoretical Models of Chemical Bonding, Vol. 2, Z. B. Maksić, Ed., Springer Verlag, Berlin, Heidelberg, 1990, p. 137 and references cited therein Search PubMed.
  12. For a critical survey of the existing electron density partitioning techniques the reader should consult e.g.: K. Jug and Z. B. Maksić, in Theoretical Models of Chemical Bonding, Vol. 3, Z. B. Maksić, Ed., Springer Verlag, Berlin, Heidelberg, 1991, p. 235 Search PubMed.
  13. Z. B. Maksić and M. Eckert-Maksić, in Theoretical Organic Chemistry, C. Párkányi, Ed., Elsevier, Amsterdam, 1998, p. 203 Search PubMed.
  14. A. J. Russel, P. G. Thomas and A. R. Fersht, J. Mol. Biol., 1987, 100, 803.
  15. M. Meot-Ner, J. Am. Chem. Soc., 1984, 106, 278 CrossRef.
  16. M. J. S. Dewar and D. M. Storch, Proc. Natl. Acad. Sci. USA, 1985, 82, 2225 CAS.
  17. G. S. Gorman, J. P. Speir, C. A. Turner and I. J. Amster, J. Am. Chem. Soc., 1992, 114, 3986 CrossRef CAS.
  18. G. Bojesen and T. Breindahl, J. Chem. Soc., Perkin Trans. 2, 1994, 1029 RSC.
  19. Z. B. Maksić and B. Kovačević, J. Phys. Chem. A, 1999, 103, 6678 CrossRef CAS.
  20. E. P. L. Hunter and S. G. Lias, J. Phys. Chem. Ref. Data, 1998, 27, 413.
Click here to see how this site uses Cookies. View our privacy policy here.