Spin isomerisation of para-substituted phenyl cations

(Note: The full text of this document is currently only available in the PDF Version )

Massimiliano Aschi and Jeremy N. Harvey


Abstract

The singlet and triplet potential energy surfaces of a series of p-X-substituted aryl cations (X = H, CN, CH3, F, OH, NH2) are investigated computationally at the B3LYP/6-31G(d) level of theory. The first four species are found to be ground state singlets, the last has a triplet ground state, and the spin states of the OH derivative are almost isoenergetic. The minimum energy crossing points (MECPs) between the two surfaces are found to lie very little above the higher of the two minima in all cases, and the spin-orbit coupling is significant at those points. Therefore, it is expected that aryl cations will rapidly convert to their most stable spin state, and that in cases of near degeneracy such as for p-HO-C6H4+, the states may interconvert rapidly enough to both be accessible in thermal reactions.


References

  1. For several reviews on aryl cations, see Z. Rappaport and P. J. Stang, eds., Dicoordinate Carbocations, Wiley, 1997 Search PubMed.
  2. For recent studies and applications of this reaction see (a) L. S. Romsted, J. Zhang and L. Zhuang, J. Am. Chem. Soc., 1998, 120, 10046 CrossRef CAS; (b) C. Bravo-Diaz, M. Soengas-Fernandez, M. J. Rodriguez-Sarabia and E. Gonzalez-Romero, Langmuir, 1998, 14, 5098 CrossRef CAS; (c) R. Glaser, C. J. Horan and H. Zollinger, Angew. Chem., Int. Ed. Engl., 1997, 36, 2210 CAS; (d) D. Ferraris, C. Cox, R. Anand and T. Lectka, J. Am. Chem. Soc., 1997, 119, 4319 CrossRef CAS.
  3. (a) J. Hrusák, D. Schröder, T. Weiske and H. Schwarz, J. Am. Chem. Soc., 1993, 115, 2015 CrossRef CAS and references therein; (b) M. Speranza, Chem. Rev., 1993, 93, 2933 CrossRef CAS.
  4. There are of course other low-lying electronic states for the phenyl cation, in particular a biradical state identical to the triplet discussed here, but in which the two unpaired electrons are singlet rather than triplet paired. The geometry and energy of this state, as well as of other excited states not discussed in the present paper, have been computed in ref. 6a,b, were found to lie higher in energy than the two states considered here and were therefore neglected in discussing the chemistry and spectroscopy of the phenyl cation. Accordingly, we have assumed that the chemistry of the substituted phenyl cations is likewise dominated by the lowest singlet and triplet states and we have not considered other states.
  5. The existence of the triplet state was Wrst suggested in R. W. Taft, J. Am. Chem. Soc., 1961, 83, 3351 Search PubMed.
  6. (a) J. Hrusák, D. Schröder and S. Iwata, J. Chem. Phys., 1997, 106, 7541 CrossRef CAS; (b) A. Nicolaides, D. M. Smith, F. Jensen and L. Radom, J. Am. Chem. Soc., 1997, 119, 8083 CrossRef CAS For previous results concerning the splitting of the two states, see references included in these two papers.
  7. (a) H. B. Ambroz, T. J. Kemp and G. K. Przybytniak, J. Photochem. Photobiol. A, 1997, 108, 149 CrossRef CAS; (b) H. B. Ambroz, T. J. Kemp and G. K. Przybytniak, J. Photochem. Photobiol. A, 1992, 68, 85 CrossRef CAS; (c) H. B. Ambroz and T. J. Kemp, J. Chem. Soc., Chem. Commun., 1982, 172 RSC; (d) H. B. Ambroz and T. J. Kemp, Chem. Soc. Rev., 1979, 8, 353 RSC; (e) A. Cox, T. J. Kemp, D. R. Payne, M. C. R. Simons and P. Pinot de Moira, J. Am. Chem. Soc., 1978, 100, 4779 CrossRef CAS.
  8. J. D. Dill, P. v. R. Schleyer and J. A. Pople, J. Am. Chem. Soc., 1977, 99, 1 CrossRef CAS For other computational studies of substituted aryl cations, see e.g. F. Grandinetti and M. Speranza, Chem. Phys. Lett., 1994, 229, 581 Search PubMed and ref. 10.
  9. See for example, J. A. Berson, Acc. Chem. Res., 1997, 30, 238 Search PubMed; J. Hu, B. T. Hill and R. R. Squires, J. Am. Chem. Soc., 1997, 119, 11699 CrossRef CAS; Z. Zhu, T. Bally, L. L. Stracener and R. J. McMahon, J. Am. Chem. Soc., 1999, 121, 2863 CrossRef CAS; Y. Wang, T. Yuzawa, H. Hamaguchi and J. P. Toscano, J. Am. Chem. Soc., 1999, 121, 2875 CrossRef CAS; J.-L. Wang, I. Likhotvorik and M. S. Platz, J. Am. Chem. Soc., 1999, 121, 2883 CrossRef CAS.
  10. For gas-phase reactions of substituted aryl cations see A. Filippi, G. Lilla, G. Occhiucci, C. Sparapani, O. Ursini and M. Speranza, J. Org. Chem., 1995, 60, 1250 Search PubMed.
  11. J. N. Harvey, M. Aschi, H. Schwarz and W. Koch, Theor. Chem. Acc., 1998, 99, 95 CrossRef CAS.
  12. For reviews on non-adiabatic chemistry and recent computational studies see e.g. (a) F. Bernardi, M. Olivucci and M. A. Robb, Chem. Soc. Rev., 1996, 321 RSC; (b) D. R. Yarkony, Acc. Chem. Res., 1998, 31, 511 CrossRef CAS; (c) S. Grimme, M. Woeller, S. D. Peyerimhoff, D. Danovich and S. Shaik, Chem. Phys. Lett., 1998, 287, 601 CrossRef CAS; (d) M. Garavelli, F. Bernardi, M. Olivucci, T. Vreven, S. Klein, P. Celani and M. A. Robb, Faraday Discuss., 1998, 110, 51 RSC; (e) K. Morokuma, Q. Cui and Z. Liu, Faraday Discuss., 1998, 110, 71 RSC; (f) J. E. Stevens, Q. Cui and K. Morokuma, J. Chem. Phys., 1998, 108, 1544 CrossRef CAS; (g) D. R. Yarkony, J. Phys. Chem. A, 1998, 102, 5305 CrossRef CAS; (h) M. Riad Manaa and C. F. Chabalowski, Chem. Phys. Lett., 1999, 300, 619 CrossRef CAS.
  13. (a) J. N. Harvey, D. Schröder and H. Schwarz, Bull. Soc. Chim. Belg., 1997, 106, 447 CAS; (b) C. A. Schalley, J. N. Harvey, D. Schröder and H. Schwarz, J. Phys. Chem. A, 1998, 102, 1021 CrossRef CAS; (c) M. Aschi, J. N. Harvey, C. A. Schalley, D. Schröder and H. Schwarz, Chem. Commun., 1998, 531 RSC; (d) C. A. Schalley, S. Blanksby, J. N. Harvey, D. Schröder, W. Zummack, J. H. Bowie and H. Schwarz, Eur. J. Org. Chem., 1998, 1, 987 CrossRef; (e) M. Aschi, F. Grandinetti and V. Vinciguerra, Chem. Eur. J., 1998, 4, 2366 CrossRef CAS; (f) D. Schröder, C. Heinemann, H. Schwarz, J. N. Harvey, S. Dua, S. J. Blanksby and J. H. Bowie, Chem. Eur. J., 1998, 4, 2550 CrossRef CAS.
  14. We have employed the B3LYP hybrid functional as implemented in the Gaussian 94 suite of programs, which is slightly diVerent from the original as described in A. D. Becke, J. Chem. Phys., 1993, 98, 1372 Search PubMed.
  15. For other methods to locate MECPs, see (a) N. Koga and K. Morokuma, Chem. Phys. Lett., 1985, 119, 371 CrossRef CAS; (b) D. R. Yarkony, J. Phys. Chem., 1993, 97, 4407 CrossRef CAS; (c) M. J. Bearpark, M. A. Robb and H. B. Schlegel, Chem. Phys. Lett., 1994, 223, 269 CrossRef CAS.
  16. W. H. Miller, N. C. Handy and J. E. Handy, J. Chem. Phys., 1980, 72, 99 CrossRef CAS.
  17. Gaussian 94, Revision E.2, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1995.
  18. Gamess-USA (version of 18th March 1997) M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis and J. A. Montgomery, J. Comput. Chem., 1993, 14, 1347 Search PubMed.
  19. (a) S. Koseki, M. W. Schmidt and M. S. Gordon, J. Phys. Chem., 1992, 96, 10768 CrossRef CAS; (b) S. Koseki, M. S. Gordon, M. W. Schmidt and N. Matsunaga, J. Phys. Chem., 1995, 99, 12764 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.