Predictions of 13C chemical shifts in carbocations. The use of scaled chemical shifts calculated using GIAO DFT methods[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Valerije Vrček, Olga Kronja and Hans-Ullrich Siehl


Abstract

Accurate prediction of 13C chemical shifts (δpred) for the C+ and the α- and β-carbon atoms in alkyl and cycloalkyl carbocations is achieved through scaling. Abinitio calculated chemical shifts (δcalc) at the GIAO-B3LYP/6-311G(d,p)//B3LYP/6-31G(d) level of theory for 16 different carbocations are scaled using a linear correlation equation (δpred = calc + b). The slope and intercept a and b were determined separately for C+ and the α- and β-carbon positions, and were found to be different for cation structures preferentially stabilized by β-C–H and β-C–C hyperconjugation. A very good correlation of all predicted and experimental chemical shifts is obtained (a = 0.999 ± 0.002, b = 0.231 ± 0.320). Preliminary results indicate that scaling using linear correlations can also be applied to the C+ carbon chemical shift in benzyl type carbocations.


References

  1. (a) T. Helgaker, M. Jaszunki and K. Ruud, Chem. Rev., 1999, 99, 293 CrossRef CAS; (b) J. R. Cheeseman, G. W. Trucks, T. A. Keith and M. J. Frisch, J. Chem. Phys., 1996, 104, 5497 CrossRef CAS.
  2. D. A. Forsyth and A. B. Sebag, J. Am. Chem. Soc., 1997, 119, 9483 CrossRef CAS.
  3. (a) M. Bühl, J. Gauss, M. Hofmann and P. v. R. Schleyer, J. Am. Chem. Soc., 1993, 115, 12385 CrossRef CAS; (b) G. A. Olah, M. Diaz and M. Barfield, J. Am. Chem. Soc., 1995, 117, 1403 CrossRef CAS; (c) A. Rauk, T. S. Sorensen, C. Maerker, J. W. de M. Carneiro, S. Sieber and P. v. R. Schleyer, J. Am. Chem. Soc., 1996, 118, 3761 CrossRef CAS; (d) P. v. R. Schleyer, C. Maerker, P. Buzek and S. Sieber, in Stable Carbocation Chemistry, Ed. G. K. S. Prakash and P. v. R. Schleyer, John Wiley & Sons, 1997, ch. 2 Search PubMed.
  4. (a) J. Gauss, J. Chem. Phys., 1993, 99, 3629 CrossRef CAS; (b) J. Gauss and J. F. Stanton, J. Chem. Phys., 1995, 103, 3561 CrossRef CAS; (c) J. Gauss and J. F. Stanton, J. Chem. Phys., 1996, 104, 2574 CrossRef CAS; (d) H.-U. Siehl, T. Müller, J. Gauss, P. Buzek and P. v. R. Schleyer, J. Am. Chem Soc., 1994, 116, 6384 CrossRef CAS; (e) J. F. Stanton, J. Gauss and H.-U. Siehl, Chem. Phys. Lett., 1996, 262, 183 CrossRef CAS; (f) J. Gauss and J. F. Stanton, J. Mol. Struct. (THEOCHEM), 1996, 73, 398; (g) H.-U. Siehl, abstracts from the International Conference on Quantum Chemical Calculations of NMR and EPR Parameters (NMR-EPR-98) Smolenice-Bratislava, Slovakia, September, 1998.
  5. H.-U. Siehl, V. Vrcek, O. Kronja and M. Knez, presented in part at the French–German NMR Conference II, Obernai, France, September, 1998.
  6. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, GAUSSIAN94, Revision E.1, Gaussian, Inc., Pittsburgh PA, 1995.
  7. The absolute shielding values for tetramethylsilane (TMS) both for the B3LYP/6-31G(d) optimized structure (13C: 183.8564; 1H: 31.9168; 29Si 339.9423) and for the MP2/6-31G(d) optimized structure (13C: 184.4497; H: 31.9997, 29Si 340.9428) were obtained using the GIAO-B3LYP/6-311G(d,p) method. Optimized structures are minima according to frequency calculations (NImag = 0).
  8. (a) P. v. R. Schleyer, J. W. M. Carneiro, W. Koch and D. A. Forsyth, J. Am. Chem. Soc., 1991, 113, 3990 CrossRef CAS; (b) P. R. Schreiner, D. L. Severance, W. L. Jorgensen, P. v. R. Schleyer and H. F. Schaefer III, J. Am. Chem. Soc., 1995, 117, 2663 CrossRef CAS.
  9. O. Exner, Collect. Czech. Chem. Commun., 1966, 31, 3222 CAS.
  10. Statistical test ψ=[n(1–r2)/n–2]1/2, where n is a number of data points and r is a correlation coefficient. A correlation is considered good if ψ≤ 0.1.
  11. (a) G. A. Olah and D. J. Donovan, J. Am. Chem. Soc., 1977, 99, 5026 CrossRef CAS; (b) P. v. R. Schleyer, D. Lenoir, P. Mison, G. Laing, G. K. S. Prakash and G. A. Olah, J. Am. Chem. Soc., 1980, 102, 683 CrossRef CAS; (c) C. P. Myhre and C. S. Yannoni, in Stable Carbocation Chemistry, Eds. G. K. S. Prakash and P. v. R. Schleyer, John Wiley & Sons, New York, 1997, ch. 12  Search PubMed.
  12. For example, chemical shifts obtained using GIAO-B3LYP/6-311G(d,p)//MP2/6-31G(d) method for 3A: δ(C+)= 350.46, δ(α-CH3)= 51.78, δ(α-CH2)= 65.67, δ(β-CH2)= 12.26; for 12: δ(C+)= 336.51, δ(α-CH3)= 48.24, δ(α-CH2)= 78.94, δ(β-CH2)= 66.67.
  13. (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648 CrossRef CAS; (b) T. Ziegler, Chem. Rev., 1991, 91, 651 CrossRef CAS.
  14. J. H. Botkin, D. A. Forsyth and D. J. Sardella, J. Am. Chem. Soc., 1986, 108, 2797 CrossRef CAS.
  15. R. P. Kirchen and T. S. Sorensen, J. Am. Chem. Soc., 1978, 100, 1487 CrossRef CAS.
  16. R. P. Kirchen, K. Ranganayakulu and T. S. Sorensen, J. Am. Chem. Soc., 1987, 109, 7811 CrossRef CAS.
  17. P. C. Myhre, J. D. Kruger, B. L. Hammond, S. M. Lok, C. S. Yannoni, V. Macho, H. H. Limbach and H. M. Vieth, J. Am. Chem. Soc., 1984, 106, 6079 CrossRef CAS.
  18. G. A. Olah and G. Liang, J. Am. Chem. Soc., 1973, 95, 3792 CrossRef CAS.
  19. P. C. Myhre, G. G. Webb and C. S. Yannoni, J. Am. Chem. Soc., 1990, 112, 8992 CrossRef CAS.
  20. G. A. Olah, G. K. S. Prakash, J. G. Shih, V. V. Krishnamurthy, G. D. Mateescu, G. Liang, G. Sipos, V. Buss, T. M. Gund and P. v. R. Schleyer, J. Am. Chem. Soc., 1985, 107, 2764 CrossRef CAS.
  21. G. A. Olah, R. D. Porter, C. L. Jeuell and A. M. White, J. Am. Chem. Soc., 1972, 94, 2044 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.