New aspects concerning the mechanism of the ketone-catalysed decomposition of Caro’s acid

(Note: The full text of this document is currently only available in the PDF Version )

Andreas Lange, Markus Hild and Hans-Dieter Brauer


Abstract

The kinetics of the ketone-catalysed decomposition of peroxymonosulfuric acid (Caro’s acid) have been investigated by measuring the phosphorescence of the released singlet molecular oxygen (1O2) at 1270 nm. As catalysts fluoroacetone, 1,1,1-trifluoroacetone, hexafluoroacetone and N,N-dimethyl-4-oxopiperidinium nitrate were used. With the exception of fluoroacetone, for the other ketones their third-order rate constant for the formation of the corresponding dioxirane is determined by the pH of the solution. The results are explained on the assumption that for ketones with strong electron-withdrawing groups the keto–gem-diol equilibrium and additionally the first dissociation equilibrium of the diol form must be taken into account, if pH ≥ pKa1d (where Ka1d denotes the first dissociation constant of the diol form). In addition, the apparent activation energy Eaa′ = (60 ± 6) kJ mol–1 obtained for the N,N-dimethyl-4-oxopiperidinium nitrate catalysed decomposition of Caro’s acid at pH = 9.0 [double less-than, compressed] pKa1d(N,N-dimethyl-4-oxopiperidinium-diol) is in agreement with the assumption that a preliminary keto–gem-diol equilibrium is involved in the dioxirane formation. Furthermore, the second-order rate constant k6 for the reaction between dimethyldioxirane and the dianion of Caro’s acid (SO52–) has been determined by measuring the bleaching of the anionic dye Brilliant Blue G250 by in situ generated and by isolated dimethyldioxirane, respectively. This rate constant was found to be k6 = (1.6 ± 0.3) × 103 dm3 mol–1 s–1. Moreover, the bleaching of Brilliant Blue G250 by other ketone–Caro’s acid systems was studied using cyclohexanone, fluoroacetone and N,N-dimethyl-4-oxopiperidinium nitrate as catalysts. These bleaching experiments yielded the ratio of rate constants k13/k6, where k13 is the second-order rate constant for the reaction between Brilliant Blue G250 and a chosen dioxirane. The values of k13/k6 vary in a small range between 0.23 (fluoroacetone) and 0.42 (cyclohexanone). k13 obtained for the bleaching of Brilliant Blue G250 by dimethyldioxirane amounts to (5 ± 1) × 102 dm3 mol–1 s–1.


References

  1. (a) R. E. Montgomery, J. Am. Chem. Soc., 1974, 96, 7820 CrossRef CAS; (b) W. Adam, R. Curci and J. O. Edwards, Acc. Chem. Res., 1989, 22, 205 CrossRef CAS; (c) R. W. Murray, Chem. Rev., 1989, 89, 1187 CrossRef CAS; (d) R. Curci, in Advances in Oxygenated Processes, ed. A. L. Baumstark, JAI Press, Greenwich, CT, 1990, vol. 2, ch. 1 Search PubMed; (e) W. Adam, L. P. Hadjiarapoglou, R. Curci and R. Mello, in Organic Peroxides, ed. W. Ando, John Wiley and Sons, New York, 1992, ch. 4 Search PubMed.
  2. A. Lange and H.-D. Brauer, J. Chem. Soc., Perkin Trans. 2, 1996, 805 RSC.
  3. (a) J. O. Edwards, R. H. Pater, R. Curci and F. Di Furia, Photochem. Photobiol., 1979, 30, 63 CrossRef CAS; (b) A. R. Gallopo and J. O. Edwards, J. Org Chem., 1981, 46, 1684 CrossRef CAS.
  4. S. E. Denmark, D. C. Forbes, D. S. Hays, J. S. DePue and R. G. Wilde, J. Org Chem., 1995, 60, 1391 CrossRef CAS.
  5. W. Adam, Y. Y. Chan, D. Cremer, J. Gauss, D. Scheutzow and M. Schindler, J. Org. Chem., 1987, 52, 2800 CrossRef CAS.
  6. H. M. E. Cardwell and F. J. McQuillin, J. Chem. Soc., 1949, 708 RSC.
  7. H. Jockel and R. Schmidt, J. Chem. Soc., Perkin Trans. 2, 1997, 2719 RSC.
  8. R. Schmidt and H.-D. Brauer, J. Am. Chem. Soc., 1987, 109, 6976 CrossRef CAS.
  9. K. Böhme and H.-D. Brauer, Inorg. Chem., 1992, 31, 3468 CrossRef.
  10. R. Schmidt and E. Afshari, J. Phys. Chem., 1990, 94, 4377 CrossRef.
  11. R. Schmidt, J. Am. Chem. Soc., 1989, 111, 6983 CrossRef CAS.
  12. R. E. Montgomery, U.S. Patent 3,822,144, 1974.
  13. R. P. Bell, in Advances in Physical Organic Chemistry, ed. V. Gold, Academic Press, New York, 1966, vol. 4, p. 1 Search PubMed.
  14. J. J. van Luppen, J. A. Lepoivre, R. A. Dommisse and F. C. Alderweireldt, Org. Magn. Reson., 1979, 12, 399 Search PubMed.
  15. J. Hine and R. W. Redding, J. Org. Chem., 1970, 35, 2769 CrossRef CAS.
  16. H.-J. Buschmann, H.-H. Füldner and W. Knoche, Ber. Bunsenges. Phys. Chem., 1980, 84, 41 Search PubMed.
  17. J. P. Guthrie, Can. J. Chem., 1975, 53, 898 CAS.
  18. J. Hine and N. W. Flachskam, J. Org. Chem., 1977, 42, 1979 CrossRef CAS.
  19. (a) R. Mello, M. Fiorentino, O. Sciacovelli and R. Curci, J. Org. Chem., 1988, 53, 3890 CrossRef CAS; (b) W. Adam, R. Mello and R. Curci, Angew. Chem., 1990, 102, 916 CAS.
  20. (a) A. L. Baumstark and C. J. McCloskey, Tetrahedron Lett., 1987, 28, 3311 CrossRef CAS; (b) R. W. Murray and D. L. Shiang, J. Chem. Soc., Perkin Trans. 2, 1990, 349 RSC; (c) R. Curci, A. Dinoi and M. F. Rubino, Pure Appl. Chem., 1995, 67, 811 CrossRef CAS.
  21. We could not test the values of Montgomery since PB is not commercially available.
  22. (a) R. W. Murray and D. Gu, J. Chem. Soc., Perkin Trans. 2, 1993, 2203 RSC; (b) R. W. Murray and D. Gu, J. Chem. Soc., Perkin Trans. 2, 1994, 451 RSC.
  23. A. L. Baumstark and P. C. Vasquez, J. Org. Chem., 1988, 53, 3437 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.