Is hyperconjugation responsible for the “gauche effect” in 1-fluoropropane and other 2-substituted-1-fluoroethanes?[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Paul R. Rablen, Reinhard W. Hoffmann, David A. Hrovat and Weston Thatcher Borden


Abstract

The energies and geometries of a series of 2-substituted-1-fluoroethanes were computed at the MP2/6-311++G**(6D)//MP2/6-31+G* level of theory for both the maxima and minima of the rotation about the C–C bond. The results did not support the predictions of a hyperconjugative model, that both 1,2-difluoroethane and 1-chloro-2-fluoroethane would strongly prefer a gauche conformation, and that 1-fluoro-2-silylethane would strongly prefer an anti conformation. The existence of competing electrostatic interactions between the fluorine and the substituents at C-2 was indicated by the detailed geometries of the gauche conformers and by the calculated sensitivity of the gaucheanti energy differences to the presence of a polar solvent. However, Fourier analyses of the torsional potential energies were wholly consistent with hyperconjugative electron donation into the C–F σ* orbital contributing to the conformational preferences of these 1-fluoroethanes. Fourier analyses also showed that hyperconjugation contributes to the small variations in C–C and C–F bond lengths and in fluorine atomic charges that were computed. The torsional potential energies, variations in geometry and atomic charge, and sensitivity to solvent were all in accord with the expected ranking of hyperconjugative electron donating ability of bonds to carbon, C–Si > C–H > C–C > C–Cl > C–F.


References

  1. S. Wolfe, Acc. Chem. Res., 1972, 5, 102 CrossRef CAS.
  2. E. Juaristi, J. Chem. Educ., 1979, 56, 438 CAS.
  3. S. F. Nelsen, Acc. Chem. Res., 1978, 11, 14 CrossRef CAS.
  4. N. S. Zefirov, L. G. Gurvich, A. S. Shashkov, M. Z. Krimer and E. A. Vorob'eva, Tetrahedron, 1976, 32, 1211 CrossRef CAS.
  5. N. Sheppard, Adv. Spectrosc., 1959, 1, 288 Search PubMed (p. 295 in particular).
  6. Y. Morino and K. Kuchitsu, J. Chem Phys., 1958, 28, 175 CAS.
  7. T. N. Sarachman, J. Chem. Phys., 1963, 39, 469 CAS.
  8. G. J. Szasz, J. Chem. Phys., 1955, 23, 2449 CAS.
  9. K. N. Houk, J. E. Eksterowicz, Y.-D. Wu, C. D. Fuglesang and D. B. Mitchell, J. Am. Chem. Soc., 1993, 115, 4170 CrossRef CAS.
  10. D. Parker, K. Senanayake, J. Vepsailainen, S. Williams, A. S. Batsanov and J. A. K. Howard, J. Chem. Soc., Perkin Trans. 2, 1997, 1445 RSC.
  11. T. K. Brunck and F. Weinhold, J. Am. Chem. Soc., 1979, 101, 1700 CrossRef CAS.
  12. P. Dionne and M. St-Jacques, J. Am. Chem. Soc., 1987, 109, 2616 CrossRef CAS.
  13. N. D. Epiotis, R. L. Yates, J. R. Larson, C. R. Kirmaier and F. Bernardi, J. Am. Chem. Soc., 1977, 99, 8379 CrossRef CAS.
  14. For a discussion of negative hyperconjugation more generally, see: P. v. R. Schleyer and A. J. Kos, Tetrahedron, 1983, 39, 1141 Search PubMed and references therein.
  15. W. T. Borden, Chem. Commun., 1998, 1919 RSC.
  16. W. Caminati, A. C. Fantoni, F. Manescalchi and F. Scappini, Mol. Phys., 1988, 64, 1089 CAS.
  17. L. Schäfer, M. Cao, M. Ramek, B. J. Teppen, S. Q. Newton and K. Siam, J. Mol. Struct., 1997, 413–414, 175 CrossRef.
  18. H. Kunttu, T. Raaska and M. Rasanen, J. Mol. Struct. (THEOCHEM), 1989, 53, 277 CrossRef CAS.
  19. W. J. Archer, M. A. Hossaini and R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1982, 181 RSC.
  20. H. Li and W. J. le Noble, Recl. Trav. Chim. Pays-Bas, 1992, 111, 199 CAS.
  21. B. T. Cooney and D. A. R. Happer, Aust. J. Chem., 1987, 40, 1537 CAS.
  22. H. C. Brown, M. Periasamy and P. T. Perumal, J. Org. Chem., 1984, 49, 2754 CrossRef CAS.
  23. U. Edlund, Org. Magn. Reson., 1978, 11, 516 Search PubMed.
  24. K. B. Wiberg, M. A. Murcko, K. E. Laidig and P. J. MacDougall, J. Phys. Chem., 1990, 94, 6956 CrossRef CAS.
  25. T. Hirano, S. Nonoyama, T. Miyajima, Y. Kurita, T. Kawamura and H. Sato, J. Chem. Soc., Chem. Commun., 1986, 606 RSC.
  26. D. Freissen and K. Hedberg, J. Am. Chem. Soc., 1980, 102, 3987 CrossRef.
  27. L. Fernholt and K. Kveseth, Acta Chem. Scand., Ser. A, 1980, 34, 163.
  28. W. C. Harris, J. R. Holtzclaw and V. F. Kalasinski, J. Chem. Phys., 1977, 67, 3330 CrossRef CAS.
  29. E. J. M. Van Schaick, H. J. Geise, F. C. Mijlhoff and G. Renes, J. Mol. Struct., 1973, 16, 23 CrossRef CAS.
  30. J. R. Durig, J. Liu, T. S. Little and V. F. Kalasinsky, J. Phys. Chem., 1992, 96, 8224 CrossRef CAS.
  31. K. B. Wiberg, T. A. Keith, M. J. Frisch and M. Murcko, J. Phys. Chem., 1995, 99, 9072 CrossRef CAS.
  32. K. B. Wiberg and M. A. Murcko, J. Phys. Chem., 1987, 91, 3616 CrossRef CAS.
  33. D. A. Dixon and B. E. Smart, J. Phys. Chem., 1988, 92, 2729 CrossRef CAS.
  34. L. Radom, J. Baker, P. M. W. Gill, R. H. Nobes and N. V. Riggs, J. Mol. Struct. (THEOCHEM), 1985, 126, 271 CrossRef CAS.
  35. D. A. Dixon, N. Matsuzawa and S. C. Walker, J. Phys. Chem., 1992, 96, 10740 CrossRef CAS.
  36. T. Miyajima, Y. Kurita and T. Hirano, J. Phys. Chem., 1987, 91, 3954 CrossRef CAS.
  37. K. Kveseth, Acta Chem. Scand., Ser. A, 1978, 32, 51.
  38. G. F. Smits, M. C. Krol, P. N. van Kampen and C. Altona, J. Mol. Struct. (THEOCHEM), 1986, 139, 247 CrossRef.
  39. (a) E. W. Colvin, Silicon in Organic Synthesis, Butterworth, London, 1981 Search PubMed; (b) J. B. Lambert and R. B. Finzel, J. Am. Chem. Soc., 1982, 104, 2020 CrossRef CAS; (c) S. G. Wierschke, J. Chandrasekhar and W. L. Jorgensen, J. Am. Chem. Soc., 1985, 107, 1496 CrossRef CAS and references to earlier calculations cited therein; (d) J. B. Lambert, G.-T. Wang, R. B. Finzel and D. H. Teramura, J. Am. Chem. Soc., 1987, 109, 7838 CrossRef CAS.
  40. A. Skancke, D. A. Hrovat and W. T. Borden, J. Am. Chem. Soc., 1998, 120, 7079 CrossRef CAS.
  41. At the MP2/6-31G*(optimized), the anti conformer of 1-fluoro-2-silylethane (–468.66157 Hartrees) is higher in energy than the gauche conformer (–468.66274 Hartrees) by 0.73 kcal mol–1. The results of calculations using larger basis sets (at least an additional set of diffuse functions on heavy atoms), which we consider more reliable, appear in the tables.
  42. (a) A. E. Reed, R. B. Weinstock and F. Weinhold, J. Chem. Phys., 1985, 83, 735 CrossRef CAS; (b) A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988, 88, 899 CrossRef CAS.
  43. J. B. Joresman, T. A. Keith, K. B. Wiberg, J. Snoonian and M. J. Frisch, J. Phys. Chem., 1996, 100, 16098 CrossRef CAS.
  44. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, C. Gonzalez, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon and J. A. Pople, GAUSSIAN94 (Revision C.2), Gaussian, Inc., Pittsburgh, PA, 1995.
  45. L. Radom, W. J. Hehre and J. A. Pople, J. Am. Chem. Soc., 1972, 94, 2371 CrossRef CAS.
  46. P. R. Rablen, S. A. Pearlman and D. A. Miller, J. Am. Chem. Soc., 1999, 121, 227 CrossRef CAS.
  47. P. Huber-Wälchli and Hs. H. Günthard, Spectrochim. Acta, Part A, 1981, 37, 285 CrossRef.
  48. R. J. Abraham and R. H. Kemp, J. Chem. Soc. B, 1971, 1240 RSC.
  49. A. R. H. Goodwin and G. Morrison, J. Phys. Chem., 1992, 96, 5521 CrossRef CAS.
  50. P. Huber-Wälchli and Hs. H. Günthard, Chem. Phys. Lett., 1975, 30, 347 CrossRef.
  51. J. R. Durig, J. Liu and T. S. Little, J. Phys. Chem., 1991, 95, 4664 CrossRef CAS.
  52. J. Huang and K. Hedberg, J. Am. Chem. Soc., 1990, 112, 2070 CrossRef CAS.
  53. H. Senderowitz, L. Golender and B. Fuchs, Tetrahedron, 1994, 50, 9707 CrossRef CAS.
  54. W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986 Search PubMed.
  55. H. Takeo, C. Matsumura and Y. Morino, J. Chem. Phys., 1986, 84, 4205 CrossRef CAS.
  56. (a) C. C. Miller, S. C. Stone and L. A. Philips, J. Chem. Phys., 1995, 102, 75 CrossRef CAS; (b) C. C. Miller, M. Shen and L. A. Philips, J. Phys. Chem., 1993, 97, 537 CrossRef CAS.
  57. M. Hayashi and M. Fujitake, J. Mol. Struct., 1986, 146, 9 CrossRef CAS.
  58. With DFE, CFE and FSE, hyperconjugation and electrostatics are in conflict and so the observed conformational preference for an anti or a gauche conformation is small. However, it is also possible to imagine molecules in which the two forces are in agreement. For instance, in the anionic species FCH2CH2BH3, both factors favor the anti conformer. Since both the BH3 group and the fluorine atom bear negative charge, the electrostatic interaction is repulsive and favors the anti conformation. On the other hand, since boron is electropositive, the C–B bond is expected to be a better electron donor than a C–H bond and so hyperconjugation favors the anti conformation as well. In agreement with these predictions, MP2/6-311++G**(6D)//MP2/6–31+G* calculations indicate that the anti conformer is preferred over the gauche conformer by 5.95 kcal mol–1.