Analysis of a concerted mechanism in β-lactam enzymatic hydrolysis. A quantum mechanics/molecular mechanics study

(Note: The full text of this document is currently only available in the PDF Version )

Jesús Pitarch, Juan-Luis Pascual-Ahuir, Estanislao Silla, Iñaki Tuñón and Vicente Moliner


Abstract

One of the postulated mechanisms for the acylation step in β-lactamase catalyzed hydrolysis of β-lactams, a concerted one, has been explored by means of a quantum mechanics/molecular mechanics approach. Minima and transition structures for the reaction path are reported. The TEM-1 enzyme, a class A β-lactamase, and a penicillanate, a substrate easily hydrolyzed by this enzyme, constitute the system employed in our study. We have also analyzed the effects of the protonation state of Lys73 on the reaction mechanism. The energy barriers obtained, too high for a catalytic process, indicate that a concerted mechanism is not the most probable enzymatic mechanism for the acylation. Useful information is obtained by comparing the enzyme structures corresponding to the protonated and the deprotonated Lys73 residue along the reaction path. In the protonated Michaelis complex the Glu166 residue appears considerably closer to the Lys73 residue than in the deprotonated structure. This fact implies that an initially protonated Lys73 could easily transfer a proton and thus would not be a factor in excluding acylation mechanisms in which Lys73 acts as the general base in the deprotonation of Ser70. On the other hand, the Lys73 deprotonated acyl–enzyme structure is in better agreement with the reported X-ray crystallographic data than that of the protonated case.


References

  1. (a) S. G. Waley, in The Chemistry of β-Lactams, ed. M. I. Page, Chapman & Hall, London, 1992 Search PubMed; (b) M. I. Page, A. P. Laws, M. J. Slater and J. R. Stone, Pure Appl. Chem., 1995, 67, 11; (c) J. R. Knowles, Acc. Chem. Res., 1985, 18, 97 CrossRef CAS; (d) H. C. Neu, Science, 1992, 257, 1065; (e) J. Davies, Science, 1994, 264, 375 CrossRef CAS.
  2. M. I. Page, Adv. Phys. Org. Chem., 1987, 23, 165 CAS.
  3. (a) S. J. Cartwright, A. K. Tan and A. L. Fink, Biochem. J., 1989, 263, 905 CAS; (b) R. Virden, A. K. Tan and A. L. Fink, Biochemistry, 1990, 29, 145 CrossRef CAS.
  4. N. C. J. Strynadka, H. Adachi, S. E. Jensen, K. Johns, A. Sielecki, C. Betzel, K. Sutoh and M. N. G. James, Nature, 1992, 359, 700 CrossRef CAS.
  5. L. Maveyraud, I. Massova, C. Birck, K. Miyashita, J.-P. Samama and S. Mobashery, J. Am. Chem. Soc., 1996, 118, 7435 CrossRef CAS.
  6. B. J. Sutton, P. J. Artymiuk, A. E. Cordero-Bordoa, C. Little, D. C. Phillips and S. G. Waley, Biochem. J., 1987, 248, 181 CAS.
  7. G. Oefner, A. D'Arcy, J. J. Daly, K. Gubernator, R. L. Charnas, I. Heinze, C. Hubschwerlen and F. K. Winkler, Nature, 1990, 343, 284 CrossRef.
  8. (a) O. Herzberg, J. Mol. Biol., 1991, 217, 701 CrossRef CAS; (b) O. Herzberg, G. Kapadia, B. Blanco, T. S. Smith and A. Coulson, Biochemistry, 1991, 30, 9503 CrossRef CAS.
  9. (a) C. C. H. Chen and O. Herzberg, J. Mol. Biol., 1992, 224, 1103 CAS; (b) C. C. H. Chen, J. Rahil, R. F. Pratt and O. Herzberg, J. Mol. Biol., 1993, 234, 165 CrossRef CAS.
  10. (a) C. Jelsch, F. Lenfant, J. M. Masson and J. P. Samama, FEBS Lett., 1992, 299, 135 CrossRef CAS; (b) C. Jelsch, L. Mourey, J. M. Masson and J. P. Samama, Proteins: Struct. Funct. Genet., 1993, 16, 364 CAS.
  11. (a) J. R. Knox and P. C. Moews, J. Mol. Biol., 1990, 220, 435; (b) P. C. Moews, J. R. Knox, O. Dideberg, P. Charlier and J.-M. Frère, Proteins: Struct. Funct. Genet., 1990, 7, 156 CAS; (c) J. R. Knox, P. C. Moews, W. A. Escobar and A. L. Fink, Protein Eng., 1993, 6, 11 CAS.
  12. O. Dideberg, P. Charlier, J. P. Wéry, P. Dehottay, J. Dusart, T. Erpicum, J.-M. Frère and J.-M. Ghuysen, Biochem. J., 1987, 245, 911 CAS.
  13. B. Samraoni, B. J. Sutton, R. J. Todd, P. J. Artymiuk, S. G. Waley and D. C. Phillips, Nature, 1986, 320, 378 CrossRef CAS.
  14. R. P. Ambler, A. F. W. Coulson, M. Forsman, G. Tiraby, J.-M. Frère, J.-M. Ghuysen, B. Joris, R. C. Levesque and S. G. Waley, Biochem. J., 1991, 276, 269 CAS.
  15. (a) J. Fisher, J. G. Belsaco, S. Khosla and J. R. Knowles, Biochemistry, 1980, 19, 2895 CrossRef CAS; (b) G. Dalbadie-McFarland, J. J. Neitzel and J. H. Richards, Biochemistry, 1986, 25, 332 CrossRef CAS; (c) M. T. Martin and S. G. Waley, Biochem. J., 1988, 254, 923 CAS; (d) W. J. Healey, M. R. Labgold and J. H. Richards, Proteins: Struct. Funct. Genet., 1989, 6, 275 CAS; (e) L. M. Ellerby, W. A. Escobar, A. L. Fink, C. Mitchinson and J. A. Wells, Biochemistry, 1990, 29, 5797 CrossRef CAS; (f) H. Christensen, M. T. Martin and S. G. Waley, Biochem. J., 1990, 266, 853 CAS; (g) F. Jacob, B. Joris, O. Dideberg, J. Dusart, J.-M. Ghuisen and J.-M. Frére, Protein Eng., 1990, 4, 79 CAS; (h) F. Jacob, B. Joris, S. Lepage, J. Dusart and J.-M. Frére, Biochem. J., 1990, 271, 399 CAS; (i) H. Adachi, T. Ohta and H. Matsuzawa, J. Biol. Chem., 1991, 266, 3186 CAS; (j) W. A. Escobar, A. K. Tan and A. L. Fink, Biochemistry, 1991, 30, 10783 CrossRef CAS.
  16. (a) R. M. Gibson, H. Christensen and S. G. Waley, Biochem. J., 1990, 272, 613 CAS; (b) A. K. Knap and R. F. Pratt, Biochem. J., 1991, 273, 85 CAS.
  17. S. Vijayakumar, G. Ravishanker, R. F. Pratt and D. L. Beveridge, J. Am. Chem. Soc., 1995, 117, 1722 CrossRef CAS.
  18. J. Lamotte-Brasseur, G. Dive, O. Dideberg, P. Charlier, J.-M. Frère and J.-M. Ghuysen, Biochem. J., 1991, 279, 213 CAS.
  19. C. Damblon, X. Raquet, L.-Y. Lian, J. Lamotte-Brasseur, E. Fonze, P. Charlier, G. C. K. Roberts and J.-M. Frère, Proc. Natl. Acad. Sci. USA, 1996, 93, 1747 CrossRef CAS.
  20. (a) O. Herzberg and J. Moult, Curr. Opin. Struct. Biol., 1991, 1, 946 CrossRef CAS; (b) O. Herzberg and J. Moult, Science, 1987, 236, 694 CAS.
  21. (a) S. Wolfe, C.-K. Kim and K. Yang, Can. J. Chem., 1994, 72, 1033 CAS; (b) S. Wolfe and T. Hoz, Can. J. Chem., 1994, 72, 1044 CAS; (c) S. Wolfe, H. Jin, K. Yang, C.-K. Kim and E. McEarchern, Can. J. Chem., 1994, 72, 1051 CAS.
  22. B. D. Wladkowski, S. A. Chenoweth, J. N. Sanders, M. Krauss and W. J. Stevens, J. Am. Chem. Soc., 1997, 119, 6423 CrossRef CAS.
  23. (a) C. Petrolongo and G. Ranghino, Theor. Chim. Acta, 1980, 54, 239 CrossRef; (b) C. Petrolongo, G. Ranghino and R. Scordamaglia, Chem. Phys., 1980, 45, 279 CrossRef; (c) C. Petrolongo, E. Pescatori, G. Ranghino and R. Scordamaglia, Chem. Phys., 1980, 45, 291 CrossRef.
  24. (a) M. Coll, J. Frau, F. Muñoz and F. Donoso, J. Phys. Chem. A., 1998, 102, 5915 CrossRef CAS; (b) J. Frau, J. Donoso, F. Muñoz and F. Garcia Blanco, THEOCHEM, 1997, 390, 255 CrossRef CAS; (c) J. Frau, J. Donoso, F. Muñoz and F. Garcia Blanco, THEOCHEM, 1997, 390, 247 CrossRef CAS and references therein.
  25. (a) J. Pitarch, M. F. Ruiz-López, J. L. Pascual-Ahuir, E. Silla and I. Tuñón, J. Phys. Chem. B, 1997, 101, 3581 CrossRef CAS; (b) J. Pitarch, M. F. Ruiz-López, E. Silla, J. L. Pascual-Ahuir and I. Tuñón, J. Am. Chem. Soc., 1998, 120, 2146 CrossRef CAS.
  26. (a) A. J. Turner, PhD Thesis, University of Bath, 1997; (b) A. J. Turner, V. Moliner and I. H. Williams, Phys. Chem. Chem. Phys., 1999, 1, 1323 RSC.
  27. P. Swarén, L. Maveyraud, V. Guillet, J.-M. Masson, L. Mourey and J.-P. Samama, Structure, 1995, 3, 603 CrossRef CAS.
  28. B. R. Brooks, R. E. Bruccoleri, D. Olafson, J. Slater, S. Swaminathan and M. Karplus, J. Comput. Chem., 1983, 4, 187 CrossRef CAS.
  29. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902 CrossRef.
  30. J. J. Pavelites, J. Gao, P. A. Bash and A. D. Mackerell, J. Comput. Chem., 1997, 18, 221 CrossRef CAS.
  31. A. D. MacKerell, D. Bashford, M. Bellot, R. L. Dunbrack, J. D. Evansek, M. F. Field, S. Fisscher, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin and M. Karplus, J. Phys. Chem. B, 1998, 102, 3586 CrossRef CAS.
  32. M. J. Field, P. A. Bash and M. Karplus, J. Comput. Chem., 1990, 11, 700 CrossRef CAS.
  33. K. Fukui, Acc. Chem. Res., 1981, 14, 363 CrossRef CAS.
  34. (a) R. Henderson, J. Mol. Biol., 1970, 54, 341 CrossRef CAS; (b) J. D. Robertus, J. Kraut, R. A. Alden and J. Birktoft, Biochemistry, 1972, 11, 4293 CrossRef CAS.
  35. Instead of considering the addition of water to the penicillinate, it would be more correct to consider serine as a nucleophilic agent. The calculations in the gas phase lead to senseless structures for the process for which we are interested, even when the positions of some atoms are fixed.
Click here to see how this site uses Cookies. View our privacy policy here.