Partitioning of 4-nitrophenol in aerosol-OT reverse micelles

(Note: The full text of this document is currently only available in the PDF Version )

Hui-Chih Hung and Gu-Gang Chang


Abstract

Partitioning of 4-nitrophenol in a reverse micellar system consisting of aerosol-OT (AOT)–H2O–isooctane was monitored spectrophotometrically. At pH 10.0, the ionized form 4-nitrophenolate in the water pool absorbs visible light with a maximum peak at 402 nm. However, that partitioned into the interface region is not ionized due to interactions with the negatively charged polar head of the surfactant. The partitioning depends on the water content of the system. In some intermediate [H2O]/[AOT] molar ratio values, two absorption peaks were clearly observed, which can be utilized in the partition coefficient estimation. The partitioning also depends on the buffer used. While partitioning of 4-nitrophenol into the interface is observed in carbonate buffer, the partitioning disappeared in 2-amino-2-methylpropanol buffer presumably due to displacement of 4-nitrophenol from the interface region into the water pool. This displacement is not a salt effect but is due to the amino group of 2-amino-2-methylpropanol, because tert-butylamine, rather than isobutanol, induced the replacement. When the surfactant concentration was increased, while keeping the system water content constant, the absorption peak at 402 nm increased with a concomitant decrease in the A310 peak, which demonstrated the affinity of the non-ionized 4-nitrophenol with the surfactant. Multiple apparent pKa values of 4-nitrophenol were observed in the AOT reverse micellar system. We propose a model of the AOT reverse micelles with a gradient micro-polarity in the water pool that results in a continuous influence on the ionization of 4-nitrophenol in the water pool of the system.


References

  1. P. L. Luisi, Angew. Chem., Int. Ed. Engl., 1985, 24, 439 CrossRef ; M. Waks, Proteins, 1986, 1, 4 CAS ; P. L. Luisi and L. J. Magid, CRC Crit. Rev. Biochem., 1986, 20, 409 Search PubMed ; R. Bru, A. Sánchez-Ferrer and F. García-Carmona, Biochem. J., 1995, 310, 721 CAS ; K. D. Tapas and A. Maitra, Adv. Colloid Surface Sci., 1995, 59, 95 Search PubMed ; M. T. Gómez-Puyon and A. Gómez-Puyon, Crit. Rev. Biochem. Mol. Biol., 1998, 33, 53 Search PubMed .
  2. P. A. Bachmann, P. Walde, P. L. Luisi and J. Lang, J. Am. Chem. Soc., 1990, 112, 8200 CrossRef CAS ; T. Oberholzer, R. Wick, P. L. Luisi and C. K. Biebricher, Biochem. Biophys. Res. Commun., 1995, 207, 250 CrossRef CAS .
  3. S. S. Tang and G. G. Chang, J. Org. Chem., 1995, 60, 6183 CrossRef CAS ; C. Y. Liou, T. M. Huang and G. G. Chang, J. Chem. Soc., Perkin Trans. 2, 1999, 2171 RSC .
  4. H. C. Hung, T. M. Huang and G. G. Chang, J. Chem. Soc., Perkin Trans. 2, 1997, 2757 RSC .
  5. T. M. Huang, H. C. Hung, T. C. Chang and G. G. Chang, Biochem. J., 1998, 330, 267 CAS .
  6. H. C. Hung, T. M. Huang and G. G. Chang, J. Protein Chem., 1998, 17, 99 CrossRef CAS .
  7. M. Gonnelli and G. B. Strambini, J. Phys. Chem., 1988, 92, 2854 CrossRef CAS .
  8. P. L. Luisi and C. Laane, Trends Biotechnol., 1986, 4, 153 CAS ; M. Dekker, R. Hilhorst and C. Laane, Anal. Biochem., 1989, 178, 217 CAS .
  9. G. G. Chang and S. L. Shiao, Eur. J. Biochem., 1994, 220, 861 CAS .
  10. S. S. Tang and G. G. Chang, Biochem. J., 1996, 315, 599 CAS .
  11. P. L. Luisi and B. Steinmann-Hofmann, Methods Enzymol., 1987, 136, 188 CAS .
  12. R. M. C. Dawson, D. C. Elliott, W. H. Elliott and K. M. Jones, Data for Biochemical Research, 3rd edn., Clarendon Press, Oxford, 1986, p. 370 Search PubMed .
  13. H. Chaimovich, R. M. V. Aleixo, I. M. Cuccovia, D. Zanette and F. H. Quina, in Solution Behaviour of Surfactants, eds. K. L. Mittal and E. J. Fendler, Plenum Press, New York, 1982, vol. 2, p. 949 Search PubMed ; E. Iglesias, J. R. Leis and M. E. Peña, Langmuir, 1994, 10, 662 Search PubMed .
  14. F. M. Menger and G. Saito, J. Am. Chem. Soc., 1978, 100, 4376 CrossRef CAS .
  15. Y. Khmelnitsky, I. N. Neverova, V. I. Polyakov, V. Y. Grinberg, A. V. Levashov and K. Martinek, Eur. J. Biochem., 1990, 190, 155 CAS .
  16. S. Miyagishi, W. Akasohn, T. Hashimoto and T. Asakawa, J. Colloid Interface Sci., 1996, 184, 527 CrossRef .
  17. K. Martinek, N. L. Klyachko, A. V. Kabanov, Y. L. Khmelnitsky and A. V. Levashov, Biochim. Biophys. Acta, 1989, 981, 161 CAS .
  18. R. E. Smith and P. L. Luisi, Helv. Chim. Acta, 1980, 63, 2302 CrossRef CAS ; A. T. Terpko, R. J. Seran and M. L. Bucholtz, J. Colloid Interface Sci., 1981, 84, 202 CAS ; O. A. Seoud, A. M. Chinelatto and M. R. Shimizu, J. Colloid Interface Sci., 1982, 88, 420 CrossRef ; F. D. Niemeyer and F. V. Bright, J. Phys. Chem., 1998, 102, 1474 Search PubMed .
  19. E. Bardez, E. Monnier and B. Valeur, J. Phys. Chem., 1985, 89, 5031 CrossRef CAS ; E. Bardez, E. Monnier and B. Valeur, J. Colloid Interface Sci., 1986, 112, 200 CAS ; M. Ueda and Z. A. Schelly, Langmuir, 1989, 5, 1005 CrossRef CAS ; P. López, A. Rodríguez, C. Gómez-Herrera and F. Sánchez, J. Chem. Soc., Faraday Trans., 1992, 88, 2701 RSC ; N. M. Correa, M. A. Biasutti and J. J. Silber, J. Colloid Interface Sci., 1995, 172, 71 CrossRef CAS .
  20. F. M. Menger and K. J. Yamada, J. Am. Chem. Soc., 1979, 101, 6731 CrossRef CAS ; B. I. Kurganov, T. N. Shkarina, E. A. Malakhova, D. R. Davydov and N. A. Chebotareva, Biochimie, 1989, 71, 573 CrossRef CAS .
Click here to see how this site uses Cookies. View our privacy policy here.