Spectroscopic investigation of the tautomeric equilibria in the guanine derivatives of acyclovir

(Note: The full text of this document is currently only available in the PDF Version )

Monika Plass, Albin Kristl and Michael H. Abraham


Abstract

The effect of solvent polarity on the keto–enol tautomerism of N- and O-acetylated acyclovir derivatives has been studied. Results of different spectroscopic methods (1H NMR, UV/VIS, IR, Raman) have been interpreted in combination with the results of semi-empirical calculations and by comparison with two derivatives of deoxyacyclovir. From the UV/VIS spectra it was found that the keto–enol equilibrium in acyclovir is strongly dependent on the solvent polarity; in methylene chloride the enol form was observed, whereas in water the keto form dominates. However, acetylation on the N terminal function stabilises the keto tautomer in all tested solvents, due to the formation of an intramolecular hydrogen bond between the acetyl CO function and H(1N). Substitution on the OH group in the side function does not influence the tautomeric equilibrium but changes the polarity of the substance and makes it almost insoluble in apolar solvents such as methylene chloride.


References

  1. H. J. Schaffer, L. Beauchamp, P. de Miranda, G. B. Elion, D. J. Bauer and P. Collins, Nature, 1978, 272, 583 CAS.
  2. A. S. Gilbert, J. Moss, P. L. Francis, M. J. Ashton and D. S. Ashton, Chromatographia, 1996, 42, 305 CAS.
  3. A. Leo, C. Hansch and D. Elkins, Chem. Rev., 1971, 71, 525 CrossRef CAS.
  4. A. Kristl, S. Srcic, F. Vrecer, B. Sustar and D. Vojnovic, Int. J. Pharm., 1996, 139, 231 CrossRef CAS.
  5. A. Kristl, A. Mrhar and F. Kozjek, Int. J. Pharm., 1993, 99, 79 CrossRef CAS.
  6. A. Kristl, J. Chem. Soc., Faraday Trans., 1996, 92, 1721 RSC.
  7. A. Kristl and S. Pecar, Eur. J. Med. Chem., 1997, 32, 3 CrossRef CAS.
  8. G. G. Nys and R. F. Rekker, Chim. Theor., 1973, 8, 521 Search PubMed.
  9. R. F. Rekker and R. Mannhold, Calculation of Drug Lipophilicity (The Hydrophobic Fragmental Constant Approach), VCH, Weinheim, 1992 Search PubMed.
  10. D. J. Abraham and A. J. Leo, Proteins Struct. Funct. Genet., 1987, 2, 130 CAS.
  11. A. Sygula and A. Buda, THEOCHEM, 1983, 9, 267 CrossRef CAS.
  12. L. Gorb and J. Leszczynski, Int. J. Quant. Chem., 1997, 64, 759 CrossRef.
  13. J. Leszczynski, Chem. Phys. Lett., 1990, 174, 347 CrossRef CAS.
  14. B. Albinsson and B. Norden, J. Am. Chem. Soc., 1993, 115, 223 CrossRef CAS.
  15. L. B. Clark and I. Tinoco, J. Am. Chem. Soc., 1965, 87, 11 CrossRef CAS.
  16. I. R. Gould, M. A. Vincent and I. H. Hiller, Spectrochim. Acta, 1993, 49, 1727 CrossRef.
  17. O. E. Kasende, K. Szczepaniak, W. B. Person and Th. Zeegers-Huyskens, J. Mol. Struct., 1997, 435, 17 CrossRef CAS.
  18. O. E. Kasende, K. Szczepaniak and Th. Zeegers-Huyskens, Spectrosc. Lett., 1997, 30, 415 CAS.
  19. K. Szczepaniak, M. Szczesniak, W. Szajda, W. B. Person and J. Leszczynski, Can. J. Chem., 1991, 69, 1705 CAS.
  20. K. Szczepaniak, M. Szczesniak and W. B. Person, Chem. Phys. Lett., 1988, 153, 39 CrossRef CAS.
  21. K. Szczepaniak and M. Szczesniak, J. Mol. Struct., 1987, 156, 29 CrossRef CAS.
  22. A. Kristl and G. Vesnaver, J. Chem. Soc., Faraday Trans., 1995, 91, 995 RSC.
  23. A. Stimac and J. Kobe, Synthesis, 1990, 461 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.