The mode of transmission of electrical effects[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Marvin Charton and Barbara I. Charton


Abstract

The dependence of substituent electrical effect transmission on substituent–reaction site distance and on the charge on reactant and product or transition state has been studied in the systems X–G–Y and X–Y where X is a variable substituent, Y a reaction site, and G a skeletal group. Reaction types studied were molecule–molecule (MM), molecule–ion (MI), and molecular ionization (Mi). MM reactions include proton transfer equilibria (pKa’s) of compounds with Y = CO2H, OH, SO2NH2, NR2H+, azarenes, PO2(OH), and SH; gas phase ΔGacid values for Y = CO2H and OH, and proton affinities for NR2H+, proton transfer reaction rates for XGCO2H with Ph2CN2, and hydrogen bonding equilibria for XGCN (pKHB). MI’s include rates of base catalyzed ester hydrolysis, nucleophilic substitution of PhCOCH2Br by XGCO2, and protodetritiation of T-substituted arenes. Mi reactions were solvolyses of XGCHLgMe (Lg is a leaving group) and XGCMe2Cl. The measure of electrical effect magnitude used was L, the coefficient of the localized (field and/or inductive) effect obtained from correlation of appropriate data sets with linear free energy relationships. The substituent–reaction site distance was parameterized by n, the number of bonds between the substituent and the nearest atom of the reaction site undergoing bond change (Y1). Correlations of L with 1/n2 and 1/n; and of log |[hair space]L[hair space]| with log n by simple linear regression analysis determined the dependence of L on n. Data sets with very large values of θ, the angle between the X–G bond and the line joining X and Y1, were excluded. Data in aqueous–organic solvent mixtures can be combined into a single data set regardless of the solvent composition, probably due to preferential solvation by water. The results do not agree with the Kirkwood–Westheimer model for MI, Mi, and some MM reactions all of which show a dependence on 1/n rather than 1/n2. They support a modified field effect as the mode of transmission. This model differs from the Kirkwood–Westheimer model m seeming to depend on the charge difference between initial and final states.


References

  1. C. G. Derick, J. Am. Chem. Soc., 1911, 33, 1152 CrossRef CAS.
  2. G. K. Branch and M. Calvin, The Theory of Organic Chemistry, Prentice-Hall, New York, 1941, p. 211 Search PubMed.
  3. R. W. Taft, in Steric Effects in Organic Chemistry, M. S. Newman, Ed., Wiley, New York, 1956, p. 556 Search PubMed.
  4. J. G. Kirkwood, J. Chem. Phys., 1934, 2, 351 CrossRef CAS.
  5. H. Westheimer and J. G. Kirkwood, J. Chem. Phys., 1938, 6, 513 CrossRef CAS; F. H. Westheimer and M. W. Shookhoff, J. Am. Chem. Soc., 1939, 61, 555 CrossRef CAS; F. H. Westheimer, J. Am. Chem. Soc., 1939, 61, 1977 CrossRef CAS; N. Sarmousakis, J. Chem. Phys., 1944, 12, 277 CrossRef.
  6. H. B. Watson, Modern Theories of Organic Chemistry, Oxford University Press, Oxford, 1937, p. 40 Search PubMed.
  7. A. E. Remick, Electronic Interpretations of Organic Chemistry, 2nd Edn., Wiley, New York, 1949, p. 93 Search PubMed.
  8. W. F. Reynolds, Prog. Phys. Org. Chem., 1983, 14, 165 Search PubMed.
  9. K. Bowden and E. J. Grubbs, Prog. Phys. Org. Chem., 1992, 19, 183 Search PubMed.
  10. O. Exner and Z. Friedl, Prog. Phys. Org. Chem., 1992, 19, 259 Search PubMed.
  11. K. Bowden and E. J. Grubbs, Chem. Soc. Rev., 1996, 25, 171 RSC.
  12. F. H. Westheimer and M. W. Shookhoff, J. Am. Chem. Soc., 1940, 62, 269 CrossRef CAS; F. H. Westheimer, J. Am. Chem. Soc., 1940, 62, 1892 CrossRef CAS; F. H. Westheimer, W. A. Jones and R. A. Lad, J. Chem. Phys., 1942, 10, 478 CAS; D. Price and F. H. Westheimer, J. Chem. Phys., 1943, 11, 150 CAS.
  13. F. H. Westheimer and J. G. Kirkwood, Trans. Faraday Soc., 1947, 43, 77 RSC.
  14. M. Charton, J. Phys. Org. Chem., 1999, 12, 275 CrossRef CAS.
  15. L. P. Hammett, Physical Organic Chemistry, McGraw-Hill Book Co., New York, 1940, pp. 203–204 Search PubMed.
  16. M. Charton, Prog. Phys. Org. Chem., 1987, 16, 287 Search PubMed.
  17. M. Charton, Dissertation, Stevens Institute of Technology, Hoboken, NJ, 1962.
  18. K. Bowden, Can. J. Chem., 1963, 41, 684; K. Bowden, Can. J. Chem., 1963, 41, 2781 CAS.
  19. M. Charton, CHEMTECH, 1974, 502 CAS.
  20. M. Charton, Prog. Phys. Org. Chem., 1981, 13, 119 Search PubMed; M. Charton in Correlation Analysis in Chemistry: Recent Advances, N. B. Chapman and J. Shorter, Eds., Plenum, New York, 1978, pp. 175–268 Search PubMed; M. Charton, Prog. Phys. Org. Chem., 1971, 8, 235 Search PubMed; M. Charton, Prog. Phys. Org. Chem., 1973, 10, 81 Search PubMed; M. Charton, in The Chemistry of Dienes and Polyenes, Z. Rappoport, Ed., Wiley, Chichester, 1997, pp. 683–732 Search PubMed; D. D. Perrin, B. Dempsey and E. P. Serjeant, pKa Prediction for Acids and Bases, Chapman and Hall, London, 1981 Search PubMed.
  21. M. Charton, in The Chemistry of Organic Germanium, Tin and Lead Compounds, S. Patai, Ed., Wiley, Chichester, 1995, pp. 603–664 Search PubMed.
  22. W. Kitching, M. Bullpit, D. Gartshore, W. Adcock, T. C. Khor, D. Doddrell and I. D. Rae, J. Org. Chem., 1977, 42, 2411 CrossRef CAS; W. Adcock and T. C. Khor, J. Am. Chem. Soc., 1978, 100, 7799 CrossRef CAS; W. Adcock and D. P. Cox, J. Org. Chem., 1979, 44, 3004 CrossRef CAS.
  23. C. Reichart, Solvent Effects in Organic Chemistry, Verlag Chemie, Weinheim, 1979 Search PubMed.
  24. V. Gutmann, The Donor-Acceptor Approach to Molecular Interactions, Plenum PressNew York, 1978 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.