Mechanisms of solvolytic elimination reactions of tertiary substrates: stereospecific 1,2-elimination reactions

(Note: The full text of this document is currently only available in the PDF Version )

Qingshui Meng and Alf Thibblin


Abstract

Solvolysis of (R,S[hair space])-1-chloro-1-(fluoren-9-yl)-2-methylcyclopentane (1-Cl) or the analogous 3,5-dinitrobenzoate ester 1-DNB in largely aqueous solutions yields alkenes 1-(fluoren-9-yl)-2-methylcyclopentene (4) and 1-(fluoren-9-yl)-5-methylcyclopentene (5) as the main products. The chloride 1-Cl gives a product ratio 45 of 35∶65 in 25 vol% acetonitrile in water at 25 °C. The former product is formed by an anti elimination route, which shows that the elimination reaction does not have a concerted unimolecular mechanism. The reaction to give 4 is suggested to occur via a carbocation ion pair in which the leaving chloride ion abstracts the β-hydron. Alternatively, the reaction may have an enforced uncoupled concerted mechanism in which water acts as the hydron-abstracting base. Also, solvolysis of 2-methyl-1-phenylcyclopentyl p-nitrobenzoate (8-PNB) yields the more stable alkene 10 by anti stereochemistry.


References

  1. M. M. Toteva and J. P. Richard, J. Am. Chem. Soc., 1996, 118, 11434 CrossRef CAS.
  2. E. H. Boyd, R. W. Taft, A. P. Wolf and D. R. Christman, J. Am. Chem. Soc., 1960, 82, 4729 CrossRef CAS.
  3. E. M. Arnett and T. C. Hofelich, J. Am. Chem. Soc., 1983, 105, 2889 CrossRef CAS.
  4. R. A. McClelland, V. M. Kanagasabapathy, N. S. Banait and S. Steenken, J. Am. Chem. Soc., 1989, 111, 3966 CrossRef CAS.
  5. W. K. Chwang, P. Knittel, K. M. Koshy and T. Tidwell, J. Am. Chem. Soc., 1983, 105, 3395.
  6. Y. Chiang, W. K. Chwang, A. J. Kresge, M. F. Powell and S. Szilagyi, J. Org. Chem., 1984, 49, 5218 CrossRef CAS.
  7. Y. Chiang and A. J. Kresge, J. Am. Chem. Soc., 1985, 107, 6363 CrossRef CAS.
  8. Bentley and co-workers recently proposed that both elimination and substitution from the tert-butyl carbocation may be enforced concerted reactions: T. W. Bentley, G. Llewellyn and Z. H. Ryu, J. Org. Chem., 1998, 63, 4654 Search PubMed.
  9. M. Cocivera and S. Winstein, J. Am. Chem. Soc., 1963, 85, 1702 CrossRef CAS.
  10. A. Thibblin, Chem. Soc. Rev., 1993, 22, 427 RSC.
  11. A. Thibblin and Y. Saeki, J. Org. Chem., 1997, 62, 1079 CrossRef CAS.
  12. A. Thibblin, J. Am. Chem. Soc., 1987, 109, 2071 CrossRef CAS.
  13. A. Thibblin, J. Am. Chem. Soc., 1988, 110, 4582 CrossRef CAS.
  14. A. Thibblin and H. Sidhu, J. Chem. Soc., Perkin Trans. 2, 1994, 1423 RSC.
  15. (a) R. Ta-Shma and Z. Rappoport, J. Am. Chem. Soc., 1983, 105, 6082 CrossRef CAS; (b) J. P. Richard and W. P. Jencks, J. Am. Chem. Soc., 1984, 106, 1373 CrossRef CAS.
  16. R. A. McClelland, V. M. Kanagasabapathy, N. S. Banait and S. Steenken, J. Am. Chem. Soc., 1991, 113, 1009 CrossRef CAS.
  17. Based upon an assumed association constant for ion pair formation from free ions of Kas= 0.25 M–1, cf. J. E. Prue, J. Chem. Soc., 1965, 7534 Search PubMed.
  18. A. Thibblin, J. Org. Chem., 1993, 58, 7427 CrossRef CAS.
  19. A. Thibblin, J. Am. Chem. Soc., 1989, 111, 5412 CrossRef CAS.
  20. F. G. Bordwell and G. J. McCollum, J. Org. Chem., 1976, 41, 2391 CrossRef CAS.
  21. Q. Meng and A. Thibblin, J. Am. Chem. Soc., 1997, 119, 4834 CrossRef CAS.
  22. T. L. Amyes and J. P. Richard, J. Am. Chem. Soc., 1991, 113, 8960 CrossRef CAS.
  23. C. Paradisi and J. F. Bunnett, J. Am. Chem. Soc., 1985, 107, 8223 CrossRef CAS.
  24. X. Creary, V. P. Casingal and C. E. Leahy, J. Am. Chem. Soc., 1993, 115, 1734 CrossRef CAS.
  25. A. Thibblin, J. Phys. Org. Chem., 1989, 2, 15 CrossRef CAS.
  26. See ref. 21 and references therein.
  27. A. Thibblin, J. Phys. Org. Chem., 1992, 5, 367 CrossRef CAS.
  28. C. A. Bunton, N. Carrasco, N. Cully and W. E. Watts, J. Chem. Soc., Perkin Trans. 2, 1980, 1859 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.