Spectroscopic, kinetic and mechanistic studies of the influence of ligand and substrate concentration on the activation by peroxides of CuI–thiolate and other CuI complexes

(Note: The full text of this document is currently only available in the PDF Version )

Bruce C. Gilbert, Stephen Silvester and Paul H. Walton


Abstract

Both free-radical and non-radical routes for peroxide oxidation of CuI can be identified for copper complexes obtained by the reduction of CuII by thiols, including glutathione. Copper(I)–thiolate complexes are obtained, except in the presence of e.g. 1,10-phenanthroline, and these undergo ready reaction with H2O2 and tBuOOH. EPR spin-trapping studies establish a free-radical reaction mechanism (to give tBuO˙) with the latter, and the formation of HO˙ from the former occurs only at low concentrations of copper. Kinetic studies (using UV-vis and EPR spectroscopies), together with NMR analysis, lead to the proposal that CuI aggregates react via non-radical pathways in contrast to monomeric CuI.


References

  1. F. J. Davis, B. C. Gilbert, R. O. C. Norman and M. C. R. Symons, J. Chem. Soc., Perkin Trans. 2, 1983, 1763 RSC.
  2. A. Hanaki, Chem. Lett., 1976, 1225 CAS.
  3. B. C. Gilbert, G. Harrington, G. Scrivens and S. Silvester, EPR studies of Fenton-type reactions in copper-peroxide systems, in Free Radicals in Biology and the Environment, 49, Ed. F. Minisci, NATO ASI Series, Kluwer Academic Publishers, 1997 Search PubMed.
  4. S. Goldstein and G. Czapski, J. Am. Chem. Soc., 1986, 108, 2244 CrossRef CAS.
  5. M. R. Gunther, P. M. Hanna, R. P. Mason and M. S. Cohen, Arch. Biochem. Biophys., 1995, 316, 515 CrossRef CAS.
  6. U. Mukherjee and S. N. Chatterjee, Indian J. Biochem. Biophys., 1995, 32, 32 Search PubMed.
  7. G. R. A. Johnson, N. B. Nazhat and N. A. Saadalla-Nazhat, J. Chem. Soc., Faraday Trans. 1, 1988, 84, 501 RSC.
  8. G. R. A. Johnson and N. B. Nazhat, J. Am. Chem. Soc., 1987, 109, 1990 CrossRef CAS.
  9. M. Masarwa, H. Cohen, D. Meyerstein, D. L. Hickman, A. Bakac and J. H. Espenson, J. Am. Chem. Soc., 1988, 110, 4293 CrossRef CAS.
  10. K. Yamamoto and S. Kawanishi, J. Biol. Chem., 1989, 264, 15435 CAS.
  11. Br. Med. J., 1971, 2, 270 Search PubMed.
  12. R. W. Byrnes, M. Mohan, W. E. Antholine, R. X. Xu and D. H. Petering, Biochemistry, 1990, 29, 7046 CrossRef CAS.
  13. C. J. Reed and K. T. Douglas, Biochem. Biophys. Res. Commun., 1989, 162, 1111 CAS.
  14. T. Ozawa, J. Ueda and A. Hanaki, Biochem. Mol. Int., 1993, 29, 247 Search PubMed.
  15. W. A. Prutz, J. Biochem. Biophys. Methods, 1996, 32, 125 CrossRef CAS.
  16. D. C. A. John and K. T. Douglas, Trans. Met. Chem., 1996, 21, 460 CAS.
  17. D. S. Sigman, R. Landgraf, D. M. Perrin and L. Pearson, Met. Ions Biol. Syst., 1996, 33, 485 Search PubMed.
  18. B. C. Gilbert and S. Silvester, Nukleonika, 1997, 42, 307 Search PubMed.
  19. A. Corazza, I. Harvey and P. J. Sadler, Eur. J. Biochem., 1996, 236, 697 CAS.
  20. (a) A. G. Lappin and A. McAuley, J. Chem. Soc., Dalton Trans., 1978, 1606 RSC; (b) L. Pecci, G. Montefoschi, G. Musci and D. Cavallini, Amino Acids, 1997, 13, 355 CAS.
  21. B. R. James and R. J. P. Williams, J. Chem. Soc., 1961, 2007 RSC.
  22. R. Osterberg, R. Ligaarden and D. Persson, J. Inorg. Biochem., 1979, 10, 341 CrossRef CAS.
  23. W. H. Koppenol and J. Butler, Adv. Free Rad. Biol. Med., 1985, 1, 91 Search PubMed.
  24. W. H. Koppenol, FEBS Lett., 1990, 264, 165 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.