EPR Evidence for hydroxyl- and substrate-derived radicals in Fe(II)-oxalate/hydrogen peroxide reactions. The importance of the reduction of Fe(III)-oxalate by oxygen-conjugated radicals to regenerate Fe(II) in reactions of carbohydrates and model compounds

(Note: The full text of this document is currently only available in the PDF Version )

Jonathan S. B. Park, Paul M. Wood, Bruce C. Gilbert and Adrian C. Whitwood


Abstract

EPR spectroscopy has been employed for the direct detection of a variety of free radicals formed from reaction of Fe(II)–oxalate and H2O2 in the presence of carbohydrates and related compounds: this system has been designed to model the proposed mode of action of brown rot fungi. The observed hyperfine splittings allow characterization of individual radicals formed at different positions in the carbohydrate rings. Relative signal intensities in steady-state spectra indicate the rapid generation of the hydroxyl radical, followed by relatively unselective attack of ˙OH on the substrates’ C–H bonds: the rapidity of oxidation by Fe(III) of oxygen-conjugated carbon-centred radicals (typically k 108 dm3 mol–1 s–1) is significantly reduced if there is an eclipsing β-oxygen substituent. The relevance of these findings to cellulose-cleaving reactions of certain fungi is discussed.


References

  1. K.-E. L. Eriksson, R. A. Blanchette and P. Ander, Microbial and enzymatic degradation of wood and wood components, Springer, Berlin, 1990 Search PubMed.
  2. S. M. Hyde and P. M. Wood, Microbiology, 1997, 143, 259 Search PubMed.
  3. F. Green, M. J. Larsen, J. E. Winandy and T. L. Highley, Mater. Org., 1991, 26, 191 Search PubMed.
  4. J. S. B. Park, P. M. Wood, M. J. Davies, B. C. Gilbert and A. C. Whitwood, Free Rad. Res., 1997, 27, 447 Search PubMed.
  5. T. K. Kirk, R. Ibach, M. D. Mozuch, A. H. Conner and T. L. Highley, Holzforschung, 1991, 45, 239 Search PubMed.
  6. B. C. Gilbert, R. O. C. Norman, P. S. Williams and J. N. Winter, J. Chem. Soc., Perkin Trans. 2, 1982, 1439 RSC.
  7. S. Croft, B. C. Gilbert, J. R. Lindsay Smith and A. C. Whitwood, Free Rad. Res. Commun., 1992, 17, 21 Search PubMed.
  8. B. C. Gilbert, D. M. King and C. B. Thomas, J. Chem. Soc., Perkin Trans. 2, 1980, 1821 RSC.
  9. B. C. Gilbert, D. M. King and C. B. Thomas, J. Chem. Soc., Perkin Trans. 2, 1981, 1186 RSC.
  10. B. C. Gilbert, D. M. King and C. B. Thomas, J. Chem. Soc., Perkin Trans. 2, 1983, 675 RSC.
  11. A. J. Dobbs, B. C. Gilbert and R. O. C. Norman, J. Chem. Soc., Perkin Trans. 2, 1972, 786 RSC.
  12. B. C. Gilbert, J. R. Lindsay Smith, S. R. Ward, A. C. Whitwood and P. Taylor, J. Chem. Soc., Perkin Trans. 2, 1998, 1565 RSC.
  13. M. Fitchett, B. C. Gilbert and M. Jeff, Philos. Trans. R. Soc. London B, 1985, 311, 517 Search PubMed.
  14. V. Malatesta and K. U. Ingold, J. Am. Chem. Soc., 1981, 103, 609 CrossRef CAS.
  15. R. O. C. Norman and R. J. Pritchett, J. Chem. Soc. B, 1967, 378 RSC.
  16. C. von Sonntag, Adv. Carbohydr. Chem. Biochem., 1980, 37, 7 Search PubMed.
  17. See e.g. M. N. Lehmann, M. G. Bakker, H. Patel, M. L. Partin and S. J. Dormady, J. Inclusion Phenom. Mol. Recognit. in Chem., 1995, 23, 99 Search PubMed; M. J. Perkins and B. P. Roberts, J. Chem. Soc., Perkin Trans. 2, 1975, 77 Search PubMed.
  18. E. Schmidt, W. Jandebeur, M. Hecker, R. Schnegg, M. Atterer, W. Hahn and J. W. Pedlow, Ber. Dtsch. Chem. Ges. B, 1936, 69, 366; K. Szakmary, A. Wotawa and C. P. Kubicek, J. Gen. Microbiol., 1991, 137, 2873 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.