Conformation and thermal inversion of 10,11-dihydro-5H-dibenzo[a,d]cycloheptene ring spiro-linked to homoquinones

(Note: The full text of this document is currently only available in the PDF Version )

Takumi Oshima, Schunpei Fujii, Toshihiko Takatani, Ken Kokubo and Tatsuya Kawamoto


Abstract

1,3-Dipolar cycloaddition of 5-diazo-10,11-dihydro-5H-dibenzo[a,d]cycloheptene with 2,5-dimethyl-1,4-benzoquinone gave the less stable conformer of 10′,11′-dihydro-1,4-dimethylspiro[bicyclo[4.2.0]hept-3-ene-7,5′-(5′H-dibenzo[a,d]cycloheptene)]-2,5-dione (α-conformer) via a conformationally retained nitrogen extrusion from the sterically congested indazole adduct. X-Ray structure analyses revealed that the cycloheptene ring moieties adopt considerably strained twist-boat conformations in which the dihedral angles (θ) of the –CH2CH2– bridge are 77.1 and 27.3°, respectively. At 100 °C the α-conformer underwent a one-way conformational inversion to the more stable twist-boat conformer (β-conformer) with an almost gauche angle of θ = 55.5°. A kinetic study of the thermal inversion exhibited a small dependency on the quinone substituents as well as negligible solvent effects, providing the transition energy of 127 kJ mol–1. Semiempirical (PM3) calculations were performed to determine the optimized geometries of the α- and β-conformers as well as the inversion transition state structure, which were compared with the X-ray data.


References

  1. (a) O. Hassel, Quart. Rev., 1953, 7, 221 Search PubMed ; (b) E. L. Eliel, Stereochemistry of Carbon Compounds, McGraw Hill, New York, 1962 Search PubMed ; (c) F. G. Riddlell, The Conformational Analysis of Heterocyclic Compounds, Academic Press, New York, 1980 Search PubMed ; (d) E. J. Corey and N. F. Feiner, J. Org. Chem., 1980, 45, 765 CrossRef CAS ; (e) R. Aydin and H. Gunter, Angew. Chem., Int. Ed. Engl., 1981, 20, 985 CrossRef ; (f) N. L. Allinger, Y. H. Yuh and J.-H. Lii, J. Am. Chem. Soc., 1989, 111, 8551 CrossRef CAS ; (g) J.-H. Lii and N. L. Allinger, J. Am. Chem. Soc., 1989, 111, 8566 CrossRef CAS ; (h) D. M. Ferguson and D. J. Raber, J. Am. Chem. Soc., 1989, 111, 4371 CrossRef CAS ; (i) H. Goto and E. Osawa, J. Am. Chem. Soc., 1989, 111, 8950 CrossRef CAS ; (j) D. A. Dixon and A. Komornicki, J. Am. Chem. Soc., 1990, 94, 5630 CAS ; (k) A. Bejer and P. Schuster, Monatsh. Chem., 1990, 121, 339 ; (l) Second Supplement to the 2nd Edition of Rodd's Chemistry of Carbon Compounds, ed. M. Sainsbury, Elsevier, Amsterdam, 1992, vol. IIA/B, ch. 1 Search PubMed .
  2. (a) J. B. Hendrickson, J. Am. Chem. Soc., 1967, 89, 7043 CrossRef CAS ; (b) J. Dillen and H. J. Geise, J. Chem. Phys., 1979, 70, 424 CrossRef ; (c) M. A. Winnik, Chem. Rev., 1981, 81, 491 CrossRef CAS ; (d) P. J. DeClerq, J. Org. Chem., 1981, 46, 667 CrossRef ; (e) A. L. Esteban, C. Galiano, E. Diez and F. J. Bermejo, J. Chem. Soc., Perkin Trans. 2, 1982, 657 RSC ; (f) G. Favini, J. Mol. Struct., 1983, 93, 139 CrossRef ; (g) V. Elser and H. L. Strauss, Chem. Phys. Lett., 1983, 96, 276 CrossRef CAS ; (h) O. V. Dorofeeva, L. V. Gurvich and V. S. Mastryukov, J. Mol. Struct., 1985, 129, 165 CrossRef CAS ; (i) F. A. L. Anet, Conformational Analysis of Medium-Sized Heterocycles, ed. R. S. Glass, VCH, New York, 1988, ch. 2 Search PubMed ; (j) D. Cremer, J. Phys. Chem., 1990, 94, 5502 CrossRef CAS .
  3. E. Grunwald and E. Price, J. Am. Chem. Soc., 1965, 87, 3139 CrossRef CAS .
  4. W. Weissensteiner, O. Hofer and U. G. Wagner, J. Org. Chem., 1988, 53, 3988 CrossRef CAS .
  5. M. Nógrádi, W. D. Ollis and I. O. Sutherland, J. Chem. Soc., Chem. Commun., 1970, 158 RSC .
  6. A. Burger, A Guide to the Chemical Basis of Drug Design, Wiley, New York, 1983 Search PubMed .
  7. H. Tamura, T. Oshima, G. Matsubayashi and T. Nagai, Acta Crystallogr., Sect. C, 1995, 51, 1148 CrossRef .
  8. T. Oshima and T. Nagai, J. Chem. Soc., Chem. Commun., 1994, 2787 RSC .
  9. R. Huisgen, 1,3-Dipolar Cycloaddition Chemistry, ed. A. Padwa, John Wiley & Sons, New York, 1984, vol. I, pp. 1–176 Search PubMed .
  10. T. Oshima, T. Kawamoto, H. Kuma, Y. Kushi and T. Nagai, J. Chem. Soc., Chem. Commun., 1995, 1937 RSC .
  11. P. J. P. Reboul and B. Cristau, Acta Crystallogr., Sect. B, 1981, 37, 394 CrossRef .
  12. In 1H NMR measurements, diazoalkane 1 showed one sharp singlet at δ 2.72 (CDCl3) for the –CH2CH2– bridging, indicating rapid interconversion of the dihydrodibenzocycloheptene moiety in NMR time scale .
  13. (a) D. S. Wulfman, G. Linstrumelle and C. F. Cooper, Synthetic Application of Diazoalkanes, in The Chemistry of Diazonium and Diazo Groups, Part 2, ed. S. Patai, Wiley, New York, 1978, p. 821 Search PubMed ; (b) Y. Nakano, M. Hamaguchi and T. Nagai, J. Org. Chem., 1989, 54, 1135 CrossRef CAS  and references cited therein.
  14. (a) H. Meier and K.-P. Zeller, Angew. Chem., Int. Ed. Engl., 1977, 16, 835 CrossRef ; (b) P. S. Engel, Chem. Rev., 1980, 80, 99 CrossRef CAS .
  15. J. J. Looker, D. P. Maier and T. H. Regan, J. Org. Chem., 1972, 37, 3401 CrossRef CAS .
  16. S. H. Unger and C. Hanasch, Prog. Phys. Org. Chem., 1976, 12, 91 Search PubMed .
  17. M. Charton, J. Am. Chem. Soc., 1969, 91, 615 CrossRef CAS .
  18. (a) C. Reichardt and E. H.-Görnert, Liebigs Ann. Chem., 1983, 721 Search PubMed ; (b) C. Reichardt, Chem. Rev., 1994, 94, 2319 CrossRef CAS .
  19. According to the empirical force-field calculation, Weissensteiner et al. reported that 10,11-dihydro-5H-dibenzo[a,d]cycloheptene 1 interconverts via a C2- or Cs-symmetrical transition state with an energy of 19.7 or 16.9 kJ mol–1 relative to the ground state of C1 symmetry, see ref. 4 .
  20. The calculations using the PM3 method were performed with the MOPAC program (ver. 6) using a Cache Work-System .
  21. J. Cason, C. F. Allen and S. Goodwin, J. Org. Chem., 1948, 13, 403 CrossRef CAS .
  22. T. Zincke and M. Schmidt, Ber., 1895, 28, 2753 Search PubMed .
  23. I. Moritani, S. Murahashi, K. Yoshinaga and H. Ashitaka, Bull. Chem. Soc. Jpn., 1967, 40, 1506 CAS .
  24. P. J. Abraham, L. J. Kricka and A. Ledwith, J. Chem. Soc., Perkin Trans. 2, 1974, 1648 RSC .
Click here to see how this site uses Cookies. View our privacy policy here.