Pyramidal inversion energies and conformational analysis of chalcogen-onium imides based on ab initio MO calculations[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Toshio Shimizu, Nobumasa Kamigata and Shigeru Ikuta


Abstract

Ab initio MO calculations of sulfonium, selenonium and telluronium imides R12X→NR2 (X = S, Se, Te) have been performed to obtain their pyramidal inversion (vertex inversion) barriers and rotation barriers around the chalcogen–nitrogen bonds. The activation energies for the pyramidal inversion reaction, which is an important pathway for racemization of the chiral chalcogen-onium imides when the two R1 groups are different, depend on the substituents, R1 and R2, on the chalcogen and nitrogen atoms. The computations indicated that the telluronium imides require larger activation energies for the pyramidal inversion reaction than those of corresponding sulfonium and selenonium imides. The rotation barriers around the chalcogen–nitrogen bonds, which is the conformational exchange pathway between two local minima of the chalcogen-onium imides, showed the opposite trend.


References

  1. For reviews: T. Shimizu and N. Kamigata, Rev. Heteroat. Chem., 1998, 18, 11 Search PubMed; T. Shimizu and N. Kamigata, Org. Prep. Proced. Int., 1997, 29, 603 Search PubMed.
  2. For a review: N. Kamigata and T. Shimizu, Rev. Heteroat. Chem., 1991, 4, 226 Search PubMed.
  3. T. Shimizu and M. Kobayashi, Chem. Lett., 1986, 161 CAS; T. Shimizu and M. Kobayashi, Bull. Chem. Soc. Jpn., 1986, 59, 2654 CAS; T. Shimizu and M. Kobayashi, J. Org. Chem., 1987, 52, 3399 CrossRef CAS; T. Shimizu, M. Kobayashi and N. Kamigata, Bull. Chem. Soc. Jpn., 1988, 61, 3761 CAS; T. Shimizu, M. Kobayashi and N. Kamigata, Sulfur Lett., 1988, 8, 61 Search PubMed; T. Shimizu, M. Kobayashi and N. Kamigata, Bull. Chem. Soc. Jpn., 1989, 62, 2099 CAS; T. Shimizu, K. Kikuchi, Y. Ishikawa, I. Ikemoto, M. Kobayashi and N. Kamigata, J. Chem. Soc., Perkin Trans. 1, 1989, 597 RSC.
  4. N. Kamigata, Y. Nakamura, H. Matsuyama and T. Shimizu, Chem. Lett., 1991, 249 CAS; N. Kamigata, Y. Nakamura, K. Kikuchi, I. Ikemoto, T. Shimizu and H. Matsuyama, J. Chem. Soc., Perkin Trans. 1, 1992, 1721 RSC.
  5. M. Kobayashi, K. Koyabu, T. Shimizu, K. Umemura and H. Matsuyama, Chem. Lett., 1986, 2117 CAS.
  6. T. Shimizu, T. Urakubo, P. Jin, M. Kondo, S. Kitagawa and N. Kamigata, J. Organomet. Chem., 1997, 539, 171 CrossRef CAS.
  7. T. Shimizu, Y. Yamazaki, H. Taka and N. Kamigata, J. Am. Chem. Soc., 1997, 119, 5966 CrossRef CAS.
  8. N. Kamigata, A. Matsuhisa, H. Taka and T. Shimizu, J. Chem. Soc., Perkin Trans. 1, 1995, 821 RSC.
  9. T. Shimizu, T. Urakubo and N. Kamigata, Chem. Lett., 1996, 297 CAS; T. Shimizu, T. Urakubo and N. Kamigata, J. Org. Chem., 1996, 61, 8032 CrossRef CAS.
  10. K. K. Andersen, J. W. Folly, T. I. Perkins, W. Gaffield and N. E. Papanikolau, J. Am. Chem. Soc., 1964, 86, 5637 CrossRef CAS; K. Mislow, M. M. Green, P. Laur, J. T. Melillo, T. Simmons and A. L. Ternary, Jr., J. Am. Chem. Soc., 1965, 87, 1958 CrossRef CAS; S. Zhao, O. Samuel and H. B. Kagan, Tetrahedron, 1987, 43, 5135 CrossRef CAS.
  11. D. Darwish and R. L. Tomilson, J. Am. Chem. Soc., 1968, 90, 5938 CrossRef CAS; S. J. Campbell and D. Darwish, Can. J. Chem., 1974, 52, 2953 CAS; M. Moriyama, S. Oae, T. Numata and N. Furukawa, Chem. Ind., 1976, 163 Search PubMed.
  12. K. K. Andersen, R. L. Caret and D. L. Ladd, J. Org. Chem., 1976, 41, 3096 CrossRef CAS; K. K. Andersen, The Chemistry of the Sulfonium Group, eds. C. J. M. Stirling and S. Patai, Wiley, New York, 1981, pp. 229–266 Search PubMed.
  13. J. Day and D. J. Cram, J. Am. Chem. Soc., 1965, 87, 4398 CrossRef CAS; M. Moriyama, T. Yoshimura, N. Furukawa, T. Numata and S. Oae, Tetrahedron, 1976, 32, 3003 CrossRef CAS.
  14. N. Kamigata, H. Taka, A. Matsuhisa, H. Matsuyama and T. Shimizu, J. Chem. Soc., Perkin Trans. 1, 1994, 2257 RSC; N. Kamigata, H. Taka, A. Matsuhisa and T. Shimizu, J. Phys. Org. Chem., 1995, 8, 139 CrossRef CAS.
  15. T. Shimizu, N. Seki, H. Taka and N. Kamigata, J. Org. Chem., 1996, 61, 6013 CrossRef CAS.
  16. T. Shimizu, A. Matsuhisa, N. Kamigata and S. Ikuta, J. Chem. Soc., Perkin Trans. 1, 1995, 1805 Search PubMed.
  17. C. Møller and M. S. Plesset, Phys. Rev., 1934, 46, 618 CrossRef CAS.
  18. A. Schaefer, H. Horn and R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571 CrossRef; A. Schaefer, G. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829 CrossRef.
  19. A. Leininger, A. Nicklas, H. Stoll, M. Dolg and P. Schwerdtfeger, J. Chem. Phys., 1996, 105, 1052 CrossRef CAS and references cited therein.
  20. D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys., 1993, 98, 1358 CrossRef CAS.
  21. J. Cizek, Adv. Chem. Phys., 1969, 14, 35 CAS; R. J. Bartlett and G. D. Purvis, Int. J. Quantum Chem., 1978, 14, 516 CrossRef CAS; J. A. Pople, R. Krishnan, M. Head-Gordon, K. Raghavachari and G. W. Trucks, Chem. Phys. Lett., 1989, 164, 185 CrossRef CAS.
  22. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle and J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1998.
  23. For other methods basis sets employed LANL2DZ: P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270 Search PubMed; W. R. Wadt and P. J. Hay, J. Chem. Phys., 1985, 82, 284 CrossRef CAS; P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299 CrossRef CAS 6-31G: R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971, 54, 724 CrossRef CAS; W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257 Search PubMed; P. C. Hariharan and J. A. Pople, Mol. Phys., 1974, 27, 209 CrossRef CAS; M. S. Gordon, Chem. Phys. Lett., 1980, 76, 209 CrossRef CAS; P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 1974, 28, 213 CAS 6-311G: A. D. McLean and G. S. Chandler, J. Chem. Phys., 1980, 72, 5639 CrossRef CAS; R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys., 1980, 72, 650 CrossRef ++: T. Clark, J. Chandrasekhar, G. W. Spitznagel and P. V. R. Schleyer, J. Comput. Chem., 1983, 4, 194 Search PubMed 3df,2p: M. J. Frish, J. A. Pople and J. S. Binkley, J. Chem. Phys., 1984, 80, 3265 CrossRef CAS cc-pVTZ: T. H. Dunning, Jr., J. Chem. Phys., 1989, 90, 1007 CrossRef CAS; R. A. Kendall, T. H. Dunning, Jr. and R. J. Harrison, J. Chem. Phys., 1992, 96, 6796 Search PubMed; K. A. Peterson, D. E. Wood and T. H. Dunning, Jr., J. Chem. Phys., 1994, 100, 7410.
  24. For examples: A. Kálmán, K. Sasvári and Á. Kucsman, J. Chem. Soc., Chem. Commun., 1971, 1447 Search PubMed; A. Kálmán, K. Sasvári and Á. Kucsman, Acta Crystallogr., Sect. B, 1973, 29, 1241 RSC; A. F. Cameron, F. D. Duncanson and D. G. Morris, Acta Crystallogr., Sect. B, 1976, 32, 1998 CrossRef CAS; A. Kálmán, T. Koritsánszky, I. Kapovits and Á. Kucsman, Acta Crystallogr., Sect. B, 1982, 38, 1843 CrossRef.
  25. N. G. Furmanova, R. G. Gerr, V. P. Krasnov and V. I. Naddaka, Zh. Strukt. Khim., 1984, 25, 166 Search PubMed; H. W. Roesky, K.-L. Weber, U. Seseke, W. Pinkert, M. Noltemeyer, W. Clegg and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1985, 565 RSC.
  26. N. G. Furmanova, V. I. Naddaka and V. P. Krasnov, Zh. Strukt. Khim., 1981, 22, 118 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.