Interactions between aminocalixarenes and nucleotides or nucleic acids[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Youheng Shi and Hans-Jörg Schneider


Abstract

Four calixarenes with (trimethylammonium)methyl groups at the phenyl rings in the upper rim were prepared. Association constants K with mononucleotides were determined in D2O by NMR shift titration, partially also by fluorescence competition titration using ANS as dye. The complexation free energies ΔG obtained with the derivatives of the calix[4]cone (AC4c) and the calix[4]-1,3-alternate (AC4a) conformation were similar, but increased from AMP (18 ± 1 kJ mol–1) to ADP (20 ± 1 kJ mol–1), to ATP (22 ± 1 kJ mol–1). With the calix[6] derivative (AC6) the corresponding values were 22, 24, 27 kJ mol–1, with the calix[8] host (AC8) 24, 26, 28 kJ mol–1, respectively. The large contribution of salt bridging to the complexation was obvious from the ΔG difference between adenosine and e.g. AMP (with the calix[4]cone derivative 5.6 and 17.7 kJ mol–1, respectively). Affinity differences between different nucleobases increased moderately with the size of the macrocyclic host, e.g. ΔΔG between AMP and TMP was 1 kJ mol–1 with calix[4]cone, 2 kJ mol–1 with calix[6], and 3 kJ mol–1 with calix[8] compounds. The results are in line with computer simulated complex structures in which the nucleobase or sugar parts are only partially inserted into the calix cavity. This agrees with the observed complexation induced NMR shifts (CIS), which are small but increase with the ring size of the host. Noticeably the CIS values are substantially larger for much weaker bound nucleosides.

Affinities of the four aminocalixarenes with double-stranded calf thymus (CT) DNA, with polydA*polydT and with polydG*polydC were characterized by ΔTm of the double-strand denaturation temperature and by fluorimetric assays using ethidium bromide (C50 values). The calix[4]cone derivative AC4c shows, due to the four positive charges converging at one side, the strongest effects. They surpass spermine although this also bears four protonated ammonium groups, indicating additional binding contributions from the phenyl moieties. The larger, more flexible calix[6]- and calix[8]-derivatives AC6 and AC8 show only small affinity increases in spite of their 6 or 8 positive charges. Preliminary molecular modeling studies indicate that based on the distances between the ammonium centers only partial contact of all centers to the groove phosphates can materialize. The ligands AC4c, AC4a and AC6 exhibit a remarkable preference for DNA in comparison to RNA mimics.


References

  1. C. Seel, A. Galan and J. de Mendoza, Top. Curr. Chem., 1995, 175, 101 CAS.
  2. (a) S. Claude, J.-M. Lehn, F. Schmidt and J.-P. Vigneron, J. Chem. Soc., Chem. Commun., 1991, 1182 RSC; (b) M. Dhaenens, J.-M. Lehn and J.-P. Vigneron, J. Chem. Soc., Perkin Trans. 2, 1993, 1379 RSC.
  3. P. Cudic, M. Zinic, V. Tomisic, V. Simeon, J.-P. Vigneron and J.-M. Lehn, J. Chem. Soc., Chem. Commun., 1995, 1073 RSC.
  4. (a) H. Fenniri, M. W. Hosseini and J.-M. Lehn, Helv. Chim. Acta, 1997, 80, 786 CrossRef CAS and references therein; (b) W. M. Hosseini, A. J. Blacker and J.-M. Lehn, J. Am. Chem. Soc., 1990, 112, 3896 CrossRef CAS.
  5. J. A. Aguilar, E. Garcia-Espana, J. A. Guerrero, S. V. Luis, J. M. Llinares, J. F. Miravet, J. A. Ramirez and C. Soriano, J Chem. Soc., Chem. Commun., 1995, 2237 RSC.
  6. M. C. Rotger, J. F. Gonzalez, P. Ballester, P. M. Deya and A. Costa, J. Org. Chem., 1994, 59, 4501 CrossRef CAS.
  7. F. M. Menger and K. K. Catlin, Angew. Chem., 1995, 107, 2330.
  8. S. M. Lacy, D. M. Rudkevich, W. Verboom and D. N. Reinhoudt, Tetrahedron Lett., 1994, 35, 5953 CrossRef CAS.
  9. V. Kral, A. Andrievsky and J. L. Sessler, J. Chem. Soc., Chem. Commun., 1995, 2349 RSC.
  10. J. E. Kickham, S. J. Leob and S. L. Murphy, J. Am. Chem. Soc., 1993, 115, 7031 CrossRef CAS.
  11. (a) and , ., , , (, , , ) Search PubMed; H.-J. Schneider and I. Theis, Angew. Chem, 1989, 101, 757, Angew. Chem., Int. Ed. Engl., 1989, 28, 753 Search PubMed; (b) H.-J. Schneider, T. Blatter, B. Palm, U. Pfingstag, V. Rüdiger and I. Theis, J. Am. Soc. Chem., 1992, 114, 7704 Search PubMed; (c) A. V. Eliseev and H.-J. Schneider, J. Am. Soc. Chem., 1994, 116, 6081 Search PubMed; (d) K. G. Ragunathan and H.-J. Schneider, J. Chem. Soc., Perkin Trans. 2, 1996, 2597 RSC and references cited therein.
  12. (a) W. D. Wilson, Nucleic Acids in Chemistry and Biology, Eds. G. M. Blackburn and M. J. Gait, Oxford University Press, New York, 1996, p. 329 ff Search PubMed; (b) D. S. Johnson and D. L. Boger, Comprehensive Supramolecular Chemistry, Vol. 4, Ed. Y. Murakami, Pergamon, 1996 Search PubMed; (c) J. W. Lown, Anti-Cancer Drug Des., 1988, 3, 25 Search PubMed; (d) S. Neidle and T. C. Jenkins, Mol. Des. Model., Concepts Appl. Part B, 1991, 203, 433 Search PubMed.
  13. J. Mountzouris and L. HurleySmall-Molecule-DNA Interaction Bioorganic Chemistry: Nucleic Acids, Ed. S. Hecht, Oxford University Press, ch. 10, 1996 Search PubMed.
  14. (a) C. D. Gutsche, Calixarenes, Royal Society of Chemistry, Cambridge, 1989 Search PubMed; (b) A. Pochini, R. Ungaro, Comprehensive Supramolecular Chemistry, Vol. 2, p. 103, Eds. F. Vögtle and J.-M. Lehn, 1996 Search PubMed; (c) A. Ikeda and S. Shinkai, Chem. Rev., 1997, 97, 1713 CrossRef CAS; (d) J. Vicent and V. Böhmer, (Eds.)Calixarenes, KluwerDordrecht, 1990 Search PubMed.
  15. T. Nagassaki, K. Sisido, T. Arimura and S. Shinkai, Tetrahedron, 1992, 48, 797 CrossRef CAS.
  16. M. Almi, A. Arduini, A. Casnati, A. Pochini and R. Ungaro, Tetrahedron, 1989, 45, 2177 CrossRef CAS.
  17. G. Arena, A. Casnati, A. Contino, D. Sciotto and R. Ungaro, Tetrahedron Lett., 1997, 38, 4685 CrossRef CAS.
  18. F. Arnaud-Neu, S. Fuangswasdi, A. Notti, S. Pappalardo and M. F. Parisi, Angew. Chem., Int. Ed., 1998, 37, 112 CrossRef CAS.
  19. Y. Shi and H.-J. Schneider, unpublished results.
  20. K. A. Connors, Binding Constants, John Wiley & Sons, New York, 1987p. 175 f Search PubMed.
  21. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan and M. Karplus, J. Comput. Chem., 1983, 4, 187 CrossRef CAS; L. Brooks and M. Karplus, Methods Enzymol., 1986, 127, 369 CAS; A. T. Brünger and M. Karplus, Acc. Chem. Res., 1991, 24, 54 CrossRef.
  22. H.-J. Schneider, Chem. Soc. Rev., 1994, 22, 227 RSC.
  23. (a) K. D. Stewart and T. A. Gray, J. Phys. Org. Chem., 1992, 5, 461 CrossRef CAS; (b) H.-J. Schneider and T. Blatter, Angew. Chem., 1992, 104, 1244 CrossRef CAS; Angew. Chem., Int. Ed. Engl., 1992, 31, 1207 Search PubMed.
  24. A. Hossain and H.-J. Schneider, Chem. Eur. J., 1999, 5, 1284 CrossRef CAS.
  25. (a) M. Fernandez-Saiz, H.-J. Schneider, J. Sartorius and W. D. Wilson, J. Am. Chem. Soc., 1996, 118, 4739 CrossRef CAS; (b) Ke Li, M. Fernandez-Saiz, C. T. Rigl, A. Kumar, K. G. Ragunathan, A. W. C. McConnaughie, D. W. Boykin, H.-J. Schneider and W. D. Wilson, Bioorg. Med. Chem.; Symp. Issue, Strategies for RNA Recognition, Ed. S. Hecht, 1997 Search PubMed.
  26. (a) S. Chandrasekaran, S. Kusuma, D. W. Boykin and W. D. Wilson, Magn. Reson. Chem., 1986, 24, 630 CAS; (b) J. Sartorius and H.-J. Schneider, FEBS Lett., 1995, 374, 387 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.